TRAINING & REFERENCE

murach’s

ADO.NET 3.5
LINQ and the

Entity Framework
with C# 2008

(Chapter 11)

Thanks for downloading this chapter from Murach’s ADO.NET 3.5, LINQ, and the
Entity Framework with C# 2008. We hope it will show you how easy it is to learn from
any Murach book, with its paired-pages presentation, its “how-to”” headings, its practical
coding examples, and its clear, concise style.

To view the full table of contents for this book, you can go to our website. From there,
you can read more about this book, you can find out about any additional downloads that
are available, and you can review our other books on .NET development.

Thanks for your interest in our books!

'.I MIKE MURACH & ASSOCIATES, INC.

1-800-221-5528 * (559) 440-9071 » Fax: (559) 440-0963
murachbooks @murach.com ¢« www.murach.com
Copyright © 2009 Mike Murach & Associates. All rights reserved.

http://www.murach.com/books/dcs8/index.htm
http://www.murach.com/books/dcs8/index.htm
http://www.murach.com
mailto:murachbooks@murach.com
http://www.murach.com

Contents

Introduction

Section 1

Chapter 1
Chapter 2

Section 2

Chapter 3
Chapter 4
Chapter 5

Section 3

Chapter 6
Chapter 7
Chapter 8
Chapter 9
Chapter 10

Section 4

Chapter 11
Chapter 12
Chapter 13
Chapter 14
Chapter 15
Chapter 16

Section 5

Chapter 17
Chapter 18
Chapter 19
Chapter 20

An introduction to ADO.NET programming

An introduction to database programming
An introduction to ADO.NET 3.5

How to use data sources and datasets for
Rapid Application Development

How to work with data sources and datasets
How to work with bound controls and parameterized queries
How to use the Dataset Designer

Three-layer Windows Forms applications

How to work with connections, commands, and data readers
How to work with parameters and stored procedures

How to work with transactions

How to work with object data sources

A complete Payable Entry application

How to use LINQ

An introduction to LINQ

How to use LINQ to DataSet

How to use LINQ to SQL (part 1)

How to use LINQ to SQL (part 2)

How to use LINQ data source controls with web applications
How to use LINQ to XML

How to use the Entity Framework

How to create an Entity Data Model

How to use LINQ to Entities

How to use Entity SQL

How to use Entity data source controls with web applications

Reference aids

Appendix A
Index

How to install and use the software and files for this book

XV

33

59
99
145

199
223
259
277
309

349
383
415
449
483
511

543
577
613
643

675
685

Judy
Highlight

11

An introduction to LINQ

In this chapter, you’ll learn the basic concepts and skills for using a new feature
of C# 2008 called LINQ. To illustrate these concepts and skills, I’1l use an
implementation of LINQ called LINQ to Objects. You use LINQ to Objects to
work with in-memory data structures such as generic lists and arrays.

In section 3 of this book, for example, you saw that you frequently return
the data from a database in a generic list. When you do that, you can use
LINQ to Objects to query the data in that list. Although this implementation
of LINQ isn’t technically part of ADO.NET, it will help you understand the
basic skills for using LINQ. And that will prepare you for learning how to use
LINQ with datasets, relational databases, and XML.

Basic concepts for working with LINQ
How LINQ is implementedccceceevievievieneeieeenne.

Advantages of using LINQccoiieiiiiiiinieiiieieieceeeeee e
C# 2008 features that support LINQc..cccoveeneineinciniiecececeeeee
LINQ providers included with C# 2008
The three stages of a qUETY OPErationcceceeeevereneneeeninenieeieeeenene

How to code query expressionsccooccerrienicssnmmmnnennnas
How to identify the data source for a query
How to filter the results of a query

How to sort the results of @ QUETY ...c..coovevviiieiieriiiceceeeee e
How to select fields from a qUETYcceevvieieriienienieieceeeeee e
How to assign an alias to the result of a calculation

How to join data from two or more data SOUICEScccecvereeruervereenuennns 366
How to group qUETY IeSULLSevveiieriiiiieieeieeieeee e 368
How to use extension methods and

lambda eXpressionsccuiemrrnnsssmnnesr e ———

How extension methods WOrk ...
Extension methods used to implement LINQ functionality ...
How lambda expressions WOrkccceeeeverenenencnicncnenne
How to use lambda expressions with extension methodsc..c.ccocceuenneee.

How to use extension methods that implement aggregate functions.......... 374
A Vendor Balances application that uses LINQ 376
The user interface for the applicationccceevevereririninieninineeeece, 376

The classes used by the application
The code for the form

Perspective.......ccccuvrmerinimms s

350 Section4 How to use LINQ

Basic concepts for working with LINQ

As its name implies, LINQ, or Language-Integrated Query, lets you query a
data source using the C# language. Before you learn how to code LINQ queries,
you need to learn some concepts related to LINQ, such as how LINQ is imple-
mented and what the three stages of a query operation are. You’ll also want to
know about the new features of C# 2008 that support LINQ and the LINQ
providers that are included with C# 2008. And you’ll want to know about the
advantages you’ll get from using LINQ so you can decide for yourself if it’s a
feature you want to use.

How LINQ is implemented

LINQ is implemented as a set of methods that are defined by the Enumer-
able and Queryable classes. Because these methods can only be used in a query
operation, they’re referred to as query operators. Although you can call the
query operators directly by coding a method-based query, you're more likely to
use the clauses C# provides that give you access to the operators. When you use
C# clauses to code a LINQ query, the result is called a query expression.

Figure 11-1 presents the C# clauses you’re most likely to use in a query
expression. If you’ve ever coded a query using SQL, you shouldn’t have any
trouble understanding what most of these clauses do. For example, you use the
from clause to identify the data source for the query. You use the where clause
to filter the data that’s returned by the query. And you use the select clause to
identify the fields you want to be returned by the query. You’ll learn how to
code queries that use all of these clauses later in this chapter.

Advantages of using LINQ

Figure 11-1 also lists several advantages of LINQ. Probably the biggest
advantage is that it lets you query different types of data sources using the same
language. In this chapter, for example, you’ll see how to use LINQ to query a
generic list of objects. Then, in the chapters that follow, you’ll see how to use
LINQ to query datasets, SQL Server databases, and XML.

The key to making this work is that the query language is integrated into
C#. Because of that, you don’t have to learn a different query language for each
type of data source you want to query. In addition, as you enter your queries,
you can take advantage of the IntelliSense features that are provided for the C#
language. The compiler can catch errors in the query, such as a field that doesn’t
exist in the data source, so that you don’t get errors at runtime. And when a
runtime error does occur, you can use the Visual Studio debugging features to
determine its cause.

Chapter 11~ An introduction to LINQ

Some of the C# clauses for working with LINQ

Clause Description

from Identifies the source of data for the query.

where Provides a condition that specifies which elements are retrieved from the data source.

orderby Indicates how the elements that are returned by the query are sorted.

select Specifies the content of the returned elements.

let Performs a calculation and assigns an alias to the result that can then be used within
the query.

join Combines data from two data sources.

group Groups the returned elements and, optionally, lets you perform additional operations
on each group.

Advantages of using LINQ
e Makes it easier for you to query a data source by integrating the query language with C#.

e Makes it easier to develop applications that query a data source by providing
IntelliSense, compile-time syntax checking, and debugging support.

e Makes it easier for you to query different types of data sources because you use the same
basic syntax for each type.

e Makes it easier for you to use objects to work with relational data sources by providing
designer tools that create object-relational mappings.

Description

e Language-Integrated Query (LINQ) provides a set of query operators that are imple-
mented using extension methods. These methods are static members of the Enumerable
and Queryable classes.

e You can work with LINQ by calling the extension methods directly or by using C#
clauses that are converted to calls to the methods at compile time.

e A query that calls LINQ methods directly is called a method-based query. A query that
uses C# clauses is called a query expression. You use a method-based query or query
expression to identify the data you want to retrieve from a data source.

e To use LINQ with a data source, the data source must implement the IEnumerable<T>
interface or another interface that implements IEnumerable<T> such as IQueryable<T>.
A data source that implements one of these interfaces is called an enumerable type.

Figure 11-1 An introduction to LINQ

351

352

Section4 How to use LINQ

Finally, if you’re working with a relational data source such as a SQL
Server database, you can use designer tools provided by Visual Studio to
develop an object-relational mapping. Then, you can use LINQ to query the
objects defined by this mapping, and the query will be converted to the form
required by the data source. This can make it significantly easier to work with
relational data sources.

C# 2008 features that support LINQ

C# 2008 introduced a variety of new features to support LINQ. These
features are listed in the first table in figure 11-2. Most of these features can be
used outside of LINQ. For the most part, though, you’ll use these features when
you code LINQ queries. You’ll learn more about these features later in this
chapter.

LINQ providers included with C# 2008

Figure 11-2 also presents the LINQ providers that are included with C#
2008. As I’ve already mentioned, you’ll learn how to use the LINQ to Objects
provider in this chapter to query generic lists. Then, in chapter 12, you’ll learn
how to use the LINQ to DataSet provider to query the data in a dataset. In
chapter 13, you’ll learn how to use the Object Relational Designer to create an
object model for use with the LINQ to SQL provider, and you’ll learn how to
use that model to query a SQL Server database. Then, in chapter 14, you’ll learn
how to update the data in a SQL Server database using LINQ to SQL with an
object model. In chapter 16, you’ll learn how to use the LINQ to XML provider
to load XML from a file, query and modify the XML in your application, and
save the updated XML to a file. You’ll also learn how to create XML documents
and elements from scratch or from other documents and elements.

Another provider you can use with C# is LINQ to Entities. This provider
works with an Entity Data Model that maps the data in a relational database to
the objects used by your application. In chapter 17, you’ll learn how to use the
Entity Data Model Designer to create an Entity Data Model. Then, in chapter
18, you’ll learn how to use LINQ to Entities to work with this model.

Chapter 11~ An introduction to LINQ

C# 2008 features that support LINQ

Feature Description

Query expressions Expressions with a syntax similar to SQL that can be used to retrieve and
update data. Converted into method calls at compile time.

Implicitly typed variables Variables whose types are inferred from the data that’s assigned to them. Used
frequently in query expressions and with query variables.

Anonymous types An unnamed type that’s created temporarily when a query returns selected
fields from the data source.

Object initializers Used with query expressions that return anonymous types to assign values to
the properties of the anonymous type.

Extension methods Provide for adding methods to a data type from outside the definition of the
data type.

Lambda expressions Provide for coding functions inline. Used when extension methods are called
directly.

LINQ providers included with C# 2008

Provider Description

LINQ to Objects Lets you query in-memory data structures such as generic lists and arrays.

LINQ to DataSet Lets you query the data in a typed or untyped dataset. See chapter 12 for more
information.

LINQ to SQL Lets you query and update the data in a SQL Server database. See chapters 13
and 14 for more information.

LINQ to XML Lets you query and modify in-memory XML or the XML stored in a file. See
chapter 16 for more information.

LINQ to Entities Lets you query and update the data in any relational database. See chapter 18 for
more information.

Description

e C# 2008 provides several new features that are used to implement and work with LINQ.
Most of these features can also be used outside of LINQ.

e The LINQ providers perform three main functions: 1) They translate your queries into
commands that the data source can execute; 2) They convert the data that’s returned from
the data source to the objects defined by the query; and 3) They convert objects to data
when you update a data source.

e LINQ to DataSet, LINQ to SQL, and LINQ to Entities are collectively known as LINQ to
ADO.NET because they work with ADO.NET objects.

e You can use the Object Relational Designer provided by Visual Studio to generate an
object model for use with LINQ to SQL. See chapter 13 for information on how to use
this designer.

e You can use the Entity Data Model Designer provided by Visual Studio to generate an
Entity Data Model for use with LINQ to Entities. See chapter 17 for information on how
to use this designer.

Figure 11-2 C# features and providers that support LINQ

353

354 Section4 How to use LINQ

The three stages of a query operation

Figure 11-3 presents the three stages of a query operation and illustrates
these stages using a generic list. The first stage is to get the data source. How
you do that depends on the type of data source you’re working with. For the
generic list shown here, getting the data source means declaring a variable to
hold the list and then calling a method that returns a List<Invoice> object.

The second stage is to define the query expression. This expression identi-
fies the data source and the data to be retrieved from that data source. The query
expression in this figure, for example, retrieves all the invoices with an invoice
total greater than 20,000. It also sorts those invoices by invoice total in descend-
ing sequence. (Don’t worry if you don’t understand the syntax of this query
expression. You'll learn how to code query expressions in the topics that fol-
low.)

Notice here that the query expression is stored in a query variable. That’s
necessary because this query isn’t executed when it’s defined. Also notice that
the query variable is declared with the var keyword. This keyword indicates that
the variable will be given a type implicitly based on the type of elements
returned by the query. As you learned in the previous figure, this is one of the
new features of C#. In this case, because the query returns Invoice objects, the
query variable is given the type IEnumerable<Invoice>.

For this to work, the data source must be an enumerable type, which means
that it implements the IEnumerable<T> interface. The data source can also
implement the IQueryable<T> interface since this interface implements
IEnumerable<T>. In case you’re not familiar with interfaces, they consist of a
set of declarations for one or more properties, methods, and events, but they
don’t provide implementation for those properties, methods, and events. For the
example in this figure, however, all you need to know is that the List<> class
implements the IEnumerable<T> interface.

The third stage of a query operation is to execute the query. To do that, you
typically use a foreach statement like the one shown in this figure. Here, each
element that’s returned by the query expression is added to a string variable.
Then, after all the elements have been processed, the string is displayed in a
message box. As you can see, this message box lists the invoice numbers and
invoice totals for all invoices with totals greater than 20,000.

When a query is defined and executed separately as shown here, the process
is referred to as deferred execution. In contrast, queries that are executed when
they’re defined use immediate execution. Immediate execution typically occurs
when a method that requires access to the individual elements returned by the
query is executed on the query expression. For example, to get a count of the
number of elements returned by a query, you can execute the Count method on
the query expression. Then, the query will be executed immediately so the count
can be calculated. You’ll learn about some of the methods for returning these
types of values later in this chapter.

Chapter 11~ An introduction to LINQ

The three stages of a query operation

1.

2.
3.

Get the data source. If the data source is a generic list, for example, you must declare
and populate the list object.

Define the query expression.

Execute the query to return the results.

A LINQ query that retrieves data from a generic list of invoices

A statement that declares and populates the list

List<Invoice> invoicelist = InvoiceDB.GetInvoices();

A statement that defines the query expression

var invoices = from invoice in invoicelist
where invoice.InvoiceTotal > 20000
orderby invoice.InvoiceTotal descending
select invoice;

Code that executes the query

string invoiceDisplay = "Invoice No.\tInvoice Total\n";
foreach (var invoice in invoices)

invoiceDisplay += invoice.InvoiceNumber + "\t\t" +
invoice.InvoiceTotal.ToString("c") + "\n";

}

MessageBox.Show(invoiceDisplay, "Invoices Over $20,000");

The resulting dialog box

Invoices Over 520,000 [X]

Irvaice Ma, Invoice Taotal
0-2058 £37,966.19
P-0259 $26,5881.40
0-2080 $23,517.58
40318 $21,842.00
P-0E08 £20,551.18

Description

The process described above is called deferred execution because the query isn’t ex-
ecuted when it’s defined. Instead, it’s executed when the application tries to access the
individual elements returned by the query, such as when the query is used in a foreach
statement.

If a query isn’t executed when it’s defined, it’s stored in a query variable. In that case,
the query variable can be implicitly typed as [IEnumerable<T> where T is the type of
each element. In the example above, the invoices variable is assigned the type
IEnumerable<Invoice> since the invoice list contains Invoice objects.

If a query requires access to the individual elements identified by the query expression,
such as when an aggregate value is requested, immediate execution occurs. In that case,
the query expression isn’t saved in a query variable.

Figure 11-3 The three stages of a query operation

355

356

Section4 How to use LINQ

How to code query expressions

Now that you have a basic understanding of what a LINQ query is, you
need to learn the syntax for coding query expressions. That’s what you’ll learn
in the topics that follow.

How to identify the data source for a query

To identify the source of data for a query, you use the from clause shown in
figure 11-4. As you can see, this clause declares a range variable that will be
used to represent each element of the data source, and it names the data source,
which must be an enumerable type. Note that because the result of a query is an
enumerable type, the data source can be a previously declared query variable.
The from clause can also declare a type for the range variable, although the type
is usually omitted. If it is omitted, it’s determined by the type of elements in the
data source.

The example in this figure shows how to use the from clause with a generic
list of invoices. The first statement in this example creates a list that’s based on
the Invoice class and loads invoices into it using the Getlnvoices method of the
InvoiceDB class. Note that the Invoice class used in this example and other
examples in this chapter is identical to the class presented in figure 6-7 of
chapter 6, except that it doesn’t include a BalanceDue method. Also note that
it’s not important for you to know how the Getlnvoices method of the
InvoiceDB class works. All you need to know is that this method returns a
List<Invoice> object. This object is then assigned to a variable named
invoiceL.ist.

The second statement defines the query expression, which consists of just
the from clause and a select clause. The from clause uses the name invoice for
the range variable, and it identifies invoiceList as the data source. This expres-
sion is then stored in a query variable named invoices. Finally, the code that
follows uses a foreach statement to loop through the invoices and calculate a
sum of the InvoiceTotal field for each invoice.

At this point, you should realize that a query expression must always start
with a from clause that identifies the data source. That way, C# knows what the
source of data for the query is, and it can help you construct the rest of the
query based on that data source. In addition, a query expression must end with
either a select clause or a group clause. In the example in this figure, the select
clause simply indicates that Invoice objects should be returned by the query.
Later in this chapter, however, you’ll see that you can use the select clause to
return just the fields you want from each element of a data source.

You may have noticed in this example that the variable that’s used in the
query expression and the variable that’s used in the foreach loop have the same
name. That makes sense because they both refer to an element in the data

Chapter 11~ An introduction to LINQ

The syntax of the from clause

from [type] elementName in collectionName

A LINQ query that includes just a From clause

A statement that declares and populates a generic list of invoices

List<Invoice> invoiceList = InvoiceDB.GetInvoices():;

A statement that defines the query expression

var invoices = from invoice in invoiceList
select invoice;

Code that executes the query

decimal sum = 0;
foreach (var invoice in invoiceList)

{
}

MessageBox.Show (sum.ToString ("c"), "Sum of Invoices");

sum += invoice.InvoiceTotal;

The resulting dialog box

Sum of Invoices @

$214,290,51

Description

The from clause identifies the source of data for a query and declares a range variable
that’s used to iterate through the elements of the data source.

If the range variable you use in a query expression and the range variable you use in the

foreach statement that executes the query refer to the same type of elements, you should
give them the same name for clarity. Otherwise, you should give them different names to
indicate the type of elements they refer to.

The From clause must be the first clause in a query expression. In addition, a query
expression must end with a select clause or a group clause.

Figure 11-4 How to identify the data source for a query

357

358

Section4 How to use LINQ

source. However, you should know that you don’t have to use the same names
for these variables. In fact, when you code more sophisticated query expres-
sions, you’ll want to use different variable names to indicate the differences
between the elements they refer to. That’ll make more sense when you see the
group clause later in this chapter.

How to filter the results of a query

To filter the results of a query, you use the where clause shown in figure
11-5. On this clause, you specify a condition that an element must meet to be
returned by the query. The condition is coded as a Boolean expression. The
example in this figure illustrates how this works.

The where clause in this example specifies that for an element to be re-
turned from the generic list of invoices, the invoice’s balance due, which is
calculated by subtracting its PaymentTotal and CreditTotal columns from its
InvoiceTotal column, must be greater than zero. In addition, the due date must
be less than 15 days from the current date. Notice here that the range variable
that’s declared by the from clause is used in the where clause to refer to each
Invoice object. Then, the foreach statement that executes the query refers to the
VendorID, InvoiceNumber, InvoiceTotal, PaymentTotal, and CreditTotal proper-
ties of each Invoice object that’s returned by the query to create a string that’s
displayed in a message box.

Chapter 11~ An introduction to LINQ

The syntax of the where clause

where condition

A LINQ query that filters the generic list of invoices

A query expression that returns invoices with a balance due within the next
15 days

var invoices = from invoice in invoiceList
where invoice.InvoiceTotal
- invoice.PaymentTotal
- invoice.CreditTotal > 0
&& invoice.DueDate < DateTime.Today.AddDays (15)
select invoice;

Code that executes the query

string invoiceDisplay = "Vendor ID\tInvoice No.\tBalance Due\n";
foreach (var invoice in invoices)

invoiceDisplay += invoice.VendorID + "\t\t" +
invoice.InvoiceNumber + "\t";
if (invoice.InvoiceNumber.Length < 8)
invoiceDisplay += "\t";
invoiceDisplay += (invoice.InvoiceTotal - invoice.PaymentTotal
- invoice.CreditTotal) .ToString("c") + "\n";

}

MessageBox.Show (invoiceDisplay, "Vendor Invoices Due");

The resulting dialog box

Vendor Invoices Due @

Wendar 1D Invoice Mo, Bialance Cue
7e 39104 485,31

123 Q53253264 452,25

] 31361833 $579.42
123 263253265 459,97

125 263253270 $67.92

123 2BEZR3ETE 430,75

S0 1534116 90,36

Description

The where clause lets you filter the data in a data source by specifying a condition that
the elements of the data source must meet to be returned by the query.

The condition is coded as a Boolean expression that can contain one or more relational
and logical operators.

Figure 11-5 How to filter the results of a query

359

360

Section4 How to use LINQ

How to sort the results of a query

If you want the results of a query to be returned in a particular sequence,
you can include the orderby clause in the query expression. The syntax of this
clause is shown at the top of figure 11-6. This syntax indicates that you can sort
by one or more expressions in either ascending or descending sequence.

To understand how this works, the example in this figure shows how you
might sort the Invoice objects retrieved from a generic list of invoices. Here, the
query expression includes an orderby clause that sorts the invoices by vendor ID
in ascending sequence (the default), followed by balance due in descending
sequence. To do that, it uses the range variable that’s declared by the from
clause to refer to each Invoice object just like the where clause does. If you
compare the results of this query with the results shown in the previous figure,
you’ll see how the sequence has changed.

To start, the vendor IDs are listed from smallest to largest. Then, within
each vendor ID, the invoices are listed from those with the largest balances due
to those with the smallest balances due. For example, the first invoice for vendor
ID 123 has a balance due of $67.92, and the second invoice for that vendor ID
has a balance due of $59.97.

Chapter 11~ An introduction to LINQ 361

The syntax of the orderby clause

orderby expressionl [ascending|descending]
[, expression2 [ascending|descending]]...

A LINQ query that sorts the generic list of invoices
A query expression that sorts the invoices by vendor ID and balance due

var invoices = from invoice in invoiceList
where invoice.InvoiceTotal
- invoice.PaymentTotal
- invoice.CreditTotal > 0
&& invoice.DueDate < DateTime.Today.AddDays (15)
orderby invoice.VendorlID,
invoice.InvoiceTotal
- invoice.PaymentTotal
- invoice.CreditTotal descending
select invoice;

Code that executes the query

string invoiceDisplay = "Vendor ID\tInvoice No.\tBalance Due\n";
foreach (var invoice in invoices)

invoiceDisplay += invoice.VendorID + "\t\t" +
invoice.InvoiceNumber + "\t";
if (invoice.InvoiceNumber.Length < 8)
invoiceDisplay += "\t";
invoiceDisplay += (invoice.InvoiceTotal - invoice.PaymentTotal
- invoice.CreditTotal) .ToString("c") + "\n";

}

MessageBox.Show(invoiceDisplay, "Vendor Invoices Due");

The resulting dialog box

Sarted Vendor Invoices Due @

Wendar ID Invoice Mo, EBalance Due
e 39104 $85.31

S0 134116 490,36

&3 313618353 $579.42
123 2B3253270 $67,92

123 263253265 $59,97

123 953253264 $52.25

125 263253273 430,75

Description

e The orderby clause lets you specify how the results of the query are sorted. You can
specify one or more expressions on this clause, and each expression can be sorted in
ascending or descending sequence.

Figure 11-6 How to sort the results of a query

362 Section4 How to use LINQ

How to select fields from a query

So far, the queries you’ve seen in this chapter have returned entire elements
of a data source. To do that, the select clause simply named the range variable
that represents those elements. But you can also return selected fields of the
elements. To do that, you use the select clause shown in figure 11-7. This clause
lets you identify one or more fields to be included in the query results. A query
that returns something other than entire source elements is called a projection.

To illustrate how this works, the first select clause in this figure returns a
single field of each element. In this case, it returns the InvoiceTotal property of
an Invoice object. Note that because the InvoiceTotal property is defined as a
decimal type, the query variable is declared implicitly as an
IEnumerable<decimal> type.

The second example shows a query expression that returns selected proper-
ties from the Invoice objects. Specifically, it returns the VendorID,
InvoiceNumber, InvoiceTotal, PaymentTotal, and CreditTotal properties. If you
look back at the example in the previous figure, you’ll see that these are the
only properties that are used when the query is executed. Because of that, these
are the only properties that need to be retrieved.

Notice that the select clause in this example uses an object initializer to
create the objects that are returned by the query. Also notice that the object
initializer doesn’t specify a type. That’s because a type that includes just the five
properties named in the initializer doesn’t exist. In that case, an anonymous type
is created. Because the name of an anonymous type is generated by the com-
piler, you can’t refer to it directly. In most cases, that’s not a problem. If it is,
you can define the type you want to use and then name it on the object
initializer.

The last example in this figure shows how you can assign an alias to a
column in the query results. Here, the alias Number is assigned to the
InvoiceNumber column, and the alias BalanceDue is assigned to the expression
that calculates the balance due. These aliases are then used as the names of the
properties in the anonymous type that’s created, and you can refer to them when
you execute the query. In this case, the result is the same as in figure 11-6.

Chapter 11~ An introduction to LINQ

Two ways to code of the select clause

select columnExpression
select new [type] { [PropertyNamel =] columnExpressionl
[, [PropertyName2 =] columnExpression2]... }

A select clause that returns a single field

select invoice.InvoiceTotal

A select clause that creates an anonymous type

select new { invoice.VendorID, invoice.InvoiceNumber, invoice.InvoiceTotal,
invoice.PaymentTotal, invoice.CreditTotal }

A LINQ query that uses aliases in the select clause
A query expression that assigns aliases to a column and a calculated value

var invoices = from invoice in invoiceList
where invoice.InvoiceTotal - invoice.PaymentTotal
- invoice.CreditTotal > 0
&& invoice.DueDate < DateTime.Today.AddDays (15)
orderby invoice.VendorlID,
invoice.InvoiceTotal - invoice.PaymentTotal
- invoice.CreditTotal descending
select new { invoice.VendorID,
Number = invoice.InvoiceNumber,
BalanceDue = invoice.InvoiceTotal
- invoice.PaymentTotal
- invoice.CreditTotal };

Code that executes the query

string invoiceDisplay = "Vendor ID\tInvoice No.\tBalance Due\n";
foreach (var invoice in invoices)

invoiceDisplay += invoice.VendorID + "\t\t" + invoice.Number + "\t";
if (invoice.Number.Length < 8)

invoiceDisplay += "\t";
invoiceDisplay += invoice.BalanceDue.ToString("c") + "\n";

}
MessageBox.Show (invoiceDisplay, "Sorted Vendor Invoices Due");
Description
e The select clause indicates the data you want to return from each element of the query
results.

e A query that returns anything other than entire source elements is called a projection. All
of the examples above illustrate projections.

e To return two or more fields from each element, you code an object initializer within the
select clause. If the object initializer doesn’t specify a type, an anonymous type that
contains the specified fields as its properties is created. The second and third examples
above illustrate object initializers and anonymous types.

e You can assign an alias to a field by coding the alias name, followed by an equals sign,
followed by a column expression. You can assign an alias to an existing column in the
data source or to a calculated column as shown in the third example above.

Figure 11-7 How to select fields from a query

363

364 Section4 How to use LINQ

How to assign an alias to the resuit of a
calculation

In the last figure, you saw one way to assign an alias to the result of a
calculation. If you look back at the example in that figure, however, you’ll see
that the same calculation is performed in the where, orderby, and select clauses.
To avoid that, you can use the /et clause shown in figure 11-8.

As you can see, you can use the let clause to assign an alias to an expres-
sion. In the query expression in this figure, the let clause calculates the balance
due for each invoice and assigns the alias BalanceDue to the result of that
calculation. Then, the where, orderby, and select clauses that follow all refer to
this alias.

If you look at the code that executes this query, you’ll see that it’s identical
to the code in figure 11-7. That’s possible because both queries return an
anonymous type with VendorID, Number, and BalanceDue properties. However,
the query expression in this figure is much simpler because the balance due is
calculated only once.

Chapter 11~ An introduction to LINQ

The syntax of the let clause

let alias = expression

A LINQ query that assigns the result of a calculation to a variable
A query expression that calculates the balance due

var invoices = from invoice in invoicelist
let BalanceDue = invoice.InvoiceTotal
- invoice.PaymentTotal
- invoice.CreditTotal
where BalanceDue > 0
&& invoice.DueDate < DateTime.Today.AddDays (15)
orderby invoice.VendorID,
BalanceDue descending
select new {invoice.VendorID, Number = invoice.InvoiceNumber,
BalanceDue};

Code that executes the query

string invoiceDisplay = "Vendor ID\tInvoice No.\tBalance Due\n";
foreach (var invoice in invoices)

invoiceDisplay += invoice.VendorID + "\t\t" + invoice.Number + "\t";
if (invoice.Number.Length < 8)

invoiceDisplay += "\t";
invoiceDisplay += invoice.BalanceDue.ToString("c") + "\n";

}

MessageBox.Show(invoiceDisplay, "Sorted Vendor Invoices Due");

The resulting dialog box

Sarted Vendor Invoices Due @

Wendar ID Invoice Mo, EBalance Due
e 39104 $85.31

S0 134116 490,36

&3 313618353 $579.42
123 2B3253270 $67,92

123 263253265 $59,97

123 953253264 $52.25

125 263253273 430,75

Description

e The /et clause lets you assign an alias to a calculation that you perform within a query.
Then, you can use that alias in other clauses of the query that follow the let clause.

e The let clause can simplify a query expression because it eliminates the need to include a
calculation two or more times in the same query.

Figure 11-8 How to assign an alias to the result of a calculation

365

366 Section4 How to use LINQ

How to join data from two or more data sources

Figure 11-9 shows how you can include data from two or more data sources
in a query. To do that, you use the join clause shown at the top of this figure. To
start, this clause declares a range variable and names a data source just like the
from clause does. Then, it indicates how the two data sources are related.

To illustrate, the first example in this figure joins data from the list of
Invoice objects you’ve seen in the previous figures with a list of Vendor objects.
To do that, it names the invoice list on the from clause, and it names the vendor
list on the join clause. Then, the on condition indicates that only vendors in the
vendor list with vendor IDs that match vendor IDs in the invoice list should be
included in the results.

Because both the invoice and vendor lists are included as data sources in
this query expression, the rest of the query can refer to properties of both
Invoice and Vendor objects. For example, the where clause in this query expres-
sion compares the DueDate property of the Invoice objects to 15 days from the
current date. Similarly, the orderby clause sorts the results by the Name prop-
erty of the Vendor objects. And the select clause selects the Name property from
the Vendor objects and the InvoiceNumber property from the Invoice objects.
(All three clauses also include the balance due, which is defined by a let clause.)

The remaining code in this example executes the query and displays a list
that includes the vendor names, invoice numbers, and balances due. This is
similar to the lists you saw in figures 11-6 and 11-8. Because the list in this
figure includes the vendor names instead of the vendor IDs, however, it provides
more useful information.

Although this figure only shows how to join data from two data sources,
you can extend this syntax to join data from additional data sources. For ex-
ample, suppose you have three data sources named vendorList, invoiceList, and
lineltemList. Then, you could join the data in these lists using code like this:

from vendor in vendorList
join invoice in invoicelist
on vendor.vendorID equals invoice.vendorID
join lineItem in lineItemList
on invoice.invoiceID equals lineItem.invoiceID...

Once the three lists are joined, you can refer to properties from any of these lists
in the query expression.

Chapter 11~ An introduction to LINQ

The basic syntax of the join clause

join elementName in collectionName on keyNamel equals keyName?2

A LINQ query that joins data from two data sources

A query expression that joins data from generic lists of invoices and vendors

var invoices = from invoice in invoicelist
join vendor in vendorList
on invoice.VendorID equals vendor.VendorID
let BalanceDue = invoice.InvoiceTotal
- invoice.PaymentTotal
- invoice.CreditTotal
where BalanceDue > 0
&& invoice.DueDate < DateTime.Today.AddDays (15)
orderby vendor.Name, BalanceDue descending
select new {vendor.Name, Number = invoice.InvoiceNumber,
BalanceDue};

Code that executes the query

string invoiceDisplay = "Vendor Name\t\t\tInvoice No.\tBalance Due\n";
foreach (var invoice in invoices)

invoiceDisplay += invoice.Name + "\t\t";
if (invoice.Name.Length < 20)
invoiceDisplay += "\t";
if (invoice.Name.Length < 10)
invoiceDisplay += "\t";
invoiceDisplay += invoice.Number + "\t";
if (invoice.Number.Length < 8)
invoiceDisplay += "\t";
invoiceDisplay += invoice.BalanceDue.ToString("c") + "\n";

}

MessageBox.Show(invoiceDisplay, "Joined Vendor and Invoice Data");

The resulting dialog box

Joined Yendor and Invoice Data @

Wendor Mame Invoice Mo, Balance Due
Cardinal Business Media, Inc, 134116 490,36
Data Reproductions Corp 39104 485,31
Federal Express Corporation ZRIZSIZT0 $67.92
Federal Express Corporation ZRIZSIZAE 459,97
Federal Express Corporation J6IZ5IZ64 $52.25
Federal Express Corporation ZRIZSIZTI $30.75
Ingram 31361833 $579.42
Description
e The join clause lets you combine data from two or more data sources based on matching
key values. The query results will include only those elements that meet the condition
specified by the equals operator.
e You can extend the syntax shown above to join data from additional data sources.

Figure 11-9 How to join data from two or more data sources

367

368

Section4 How to use LINQ

How to group query resulits

If you want to group the elements returned by a query, you can use the
group clause presented in figure 11-10. To start, you can list the element you
want to use in the group following the group keyword. In the query expression
in this figure, I named the range variable for the query, invoice, which repre-
sents an Invoice object. That way, I can use any of the properties of the Invoice
object in the group clause.

Next, you code the by keyword followed by a key expression that identifies
the fields you want to use to group the elements. In this example, the invoices
will be grouped by vendor ID.

Finally, you can code the info keyword followed by the name you want to
use for each group. In this example, the groups are named vendorlInvoices since
they include the invoices for each vendor. Then, you can use this name to refer
to the groups in any clauses that follow the group clause.

Here, the group name is used in the orderby clause to sort the groups by the
key, in this case, the vendor ID. Notice that to refer to the key, you use the Key
property of the group. The group name is also used in the select clause to create
an anonymous type that includes the vendor ID, the number of invoices for each
vendor, and the invoices for each vendor in the results of the query. To get the
count of invoices for each vendor, the Count method is executed on the group.
You’ll learn more about this method and other aggregate methods you can use
when you group query results later in this chapter. Also notice that an alias is
assigned to each property of the anonymous type, which is required if the value
of the property refers to a group.

To understand how this query works, take a look at the code that’s used to
execute it. This code uses nested foreach statements to retrieve the query results.
The outer statement uses a variable named vendor to refer to each vendor so the
vendor ID and count of invoices can be retrieved for that vendor. Then, the inner
statement uses the Invoices property, which refers to the group of Invoice
objects for the current vendor. This property is used to get the invoice total for
each invoice. As you can see in the dialog box that’s displayed, the output
includes the vendor ID for each vendor, followed by a count of invoices for that
vendor and a list of the invoice totals.

You can also code a group clause that doesn’t name the group. In that case,
the query expression must end with the group clause. For example, you could
code a query expression like this:

var vendorInvoices = from invoice in invoicelist

group invoice by invoice.VendorID;
Then, within the foreach statement that executes the query, you could retrieve
the vendor ID for each group as well as perform aggregate functions on the
group. For examples of how this works, please see the Visual Studio documen-
tation for the group clause.

Chapter 11~ An introduction to LINQ 369

The syntax of the group clause

group elementName by keyExpression [into groupName]

A LINQ query that groups data by vendor
A query expression that calculates the invoice total for each vendor

var vendorsDue = from invoice in invoicelist
where invoice.InvoiceTotal > 20000
group invoice by invoice.VendorID
into vendorInvoices

orderby vendorInvoices.Key

select new { VendorID = vendorInvoices.Key,
InvoiceCount = vendorInvoices.Count(),
Invoices = vendorInvoices };

Code that executes the query

string vendorDisplay = "Vendor ID (Invoices)\tInvoice Total\n";
foreach (var vendor in vendorsDue)
vendorDisplay += vendor.VendorID + " (" +

vendor.InvoiceCount + ")\n";
foreach (var invoice in vendor.Invoices)
{
vendorDisplay +=
"\t\t\t" + invoice.InvoiceTotal.ToString("c") + "\n";

}
}
MessageBox.Show (vendorDisplay, "Invoices Over $20,000 By Vendor");

The resulting dialog box

Inyoices Over $20,000 By Yendor E

vendor [0 {Invoices) Invvoice Takal
72 (1)
$21,842.00
1104
$37,966.19
$26,551 .40
420,551,158
$23,517.58

Description

e The group clause lets you group the elements returned by a query based on an expression
you specify. It’s typically used to calculate aggregate values for the grouped elements.
For a list of the aggregate methods you can use, see figure 11-13.

e You can include the into keyword on a group clause to name the group. Then, you can
code additional clauses in the query expression that refer to this group. To refer to the
key expression for a group, you use the Key property of the group.

e If you code a group clause, you don’t have to code a select clause. In that case, the group
clause must be the last clause in the query expression.

Figure 11-10 How to group query results

370

Section4 How to use LINQ

How to use extension methods and
lambda expressions

Earlier in this chapter, I mentioned that the query operators provided by
LINQ are implemented as methods and that you can call these methods directly
rather than use the C# clauses for LINQ. In the topics that follow, you’ll learn
how these methods work and how you use them to implement LINQ functional-

ity.
How extension methods work

Most of the methods that provide for LINQ functionality are implemented
as extension methods. An extension method is similar to a regular method
except that it’s defined outside the data type that it’s used with. The example in
figure 11-11 shows how this works. Here, a method named
FormattedPhoneNumber is implemented as an extension method of the String
class.

You should notice three things about the code that implements this method.
First, it’s a static method that’s stored in a static class, which is a requirement
for extension methods. Second, the data type of the first parameter of the
method identifies the .NET class or structure that the method extends. In this
case, the parameter is a string, so the method extends the String class. Third, the
declaration for the first parameter is preceded by the this keyword.

Once you’ve defined an extension method, you can use it as shown in this
figure. To start, you declare a variable with the same type as the first parameter
of the method. In this case, a string variable is declared and assigned the digits
of a phone number. Then, the extension method is executed as a method of that
string. Notice that you don’t pass a value to the first parameter of the method.
Instead, the value of the object on which the method is executed is assigned to
this parameter. If any additional parameters are defined by the method, though,
their values are passed to the method as shown here.

Extension methods used to implement
LINQ functionality

Now that you have an idea of how extension methods work, you may want
to know what methods are used to implement some of the common C# clauses
for LINQ. These methods are listed in the table in figure 11-11. In the next
figure, you’ll see how you can use some of these methods in a query. Then,
you’ll learn about the extension methods that implement aggregate functions,
which aren’t available as C# clauses.

Chapter 11~ An introduction to LINQ

Extension methods used to implement common C# clauses for LINQ

Clause Method

where Where

orderby OrderBy, OrderByDescending, ThenBy, ThenByDescending
select Select

join Join

group GroupBy

An extension method that extends the String data type

A class with an extension method that formats a phone number

public static class StringExtensions

{
public static string FormattedPhoneNumber (this string phone,
string separator)
{
return phone.Substring(0, 3) + separator
+ phone.Substring(3, 3) + separator
+ phone.Substring(6, 4);
}
}

Code that uses the extension method

string phoneNumber = "5595551212";
string formattedPhoneNumber = phoneNumber.FormattedPhoneNumber (".") ;
MessageBox.Show (formattedPhoneNumber, "Extension Method") ;

The resulting dialog box

Extension Method rz|

559.555.1212

Description

C# uses extension methods to implement the standard query operators provided by
LINQ. These methods are defined for the Enumerable and Queryable classes.

Extension methods provide for adding methods to a data type from outside the definition
of that data type. Extension methods must be coded within a static class.

The first parameter of an extension method identifies the data type it extends and must
be preceded by the this keyword. You don’t pass a value to this parameter when you call
the method. Instead, you call the method on an instance of the data type identified by the
first parameter.

Figure 11-11 How to use extension methods

371

372 Section4 How to use LINQ

How lambda expressions work

When you code a query using extension methods, you need to know how to
code lambda expressions. In short, a lambda expression is a function without a
name that evaluates an expression and returns its value. Figure 11-12 presents
the syntax of a lambda expression, which consists of a parameter list followed
by the lambda operator (=>, read as “goes to”) and an expression. Note that if
the lambda expression uses more than one parameter, the parameter list must be
enclosed in parentheses. Otherwise, the parentheses can be omitted.

To use a lambda expression, you assign it to a delegate type, which specifies
the signature of a method. The first example in this figure illustrates how this
works. Here, the first statement defines a delegate type named compareDel that
accepts a decimal value and returns a Boolean value. Then, the second state-
ment declares a delegate of that type named invoiceOver20000 and assigns a
lambda expression to it. In this case, the lambda expression checks if a decimal
parameter named total is greater than 20,000. If so, the expression will return a
true value. Otherwise, it will return a false value.

In this example, the lambda expression is assigned to a variable. Then, in
the code that executes the lambda expression, that variable is used to refer to the
lambda expression and pass in the decimal value. However, you can also code a
lambda expression in-line. You’ll see how that works next.

How to use lambda expressions with extension
methods

Several of the extension methods that are used to implement LINQ define
one or more parameters that accept lambda expressions. Like the
invoiceOver20000 variable you saw in the last example, these parameters
represent delegates that specify the signature of a method. For example, the
second parameter of the Where method is defined as a delegate that accepts a
function with two parameters. The first parameter is the source element, and the
second parameter is a Boolean expression.

The second example in this figure should help you understand how this
works. Here, the query uses extension methods and lambda expressions instead
of C# clauses. As you review this query, remember that when you use an
extension method, you execute it on an instance of the data type it extends. In
this case, the extension methods are executed on the invoiceList object, which is
an Enumerable type.

The query shown here uses three extension methods, and each method
accepts a lambda expression that identifies two parameters. In each case, the
first parameter is the source element, which is an invoice in this example. Then,
the second parameter of the lambda expression for the Where method is a
Boolean expression, the second parameter for the OrderBy method is an expres-
sion that specifies the key that’s used for sorting, and the second parameter for
the Select method is an object that identifies the values to be returned by the

query.

Chapter 11~ An introduction to LINQ

The basic syntax of a lambda expression

[(lparameterList[)] => expression

A lambda expression that tests a condition
A statement that declares the delegate type

delegate bool compareDel (decimal total) ;

A statement that defines the lambda expression and assigns it to a variable
created from the delegate type

compareDel invoiceOver20000 = total => total > 20000;

Code that executes the lambda expression
decimal invoiceTotal = 22438.19M;

string invoiceMessage = "";
invoiceMessage += "Invoice Total: " + invoiceTotal.ToString("c") +
"\n" + "Invoice over $20,000: " +

invoiceOver20000 (invoiceTotal) ;
MessageBox.Show (invoiceMessage, "Invoice Test");

The resulting dialog box

Invoice Test E

Invoice Total: $22,438.19
Invoice ower $20,000: Trus

A query that uses extension methods and lambda expressions

var invoices = invoicelist
.Where(i => i.InvoiceTotal > 20000)
.OrderBy (i => i.VendorID)
.Select(i => new { i.VendorID, i.InvoiceTotal });

The same query using C# clauses

var invoices = from invoice in invoiceList
where invoice.InvoiceTotal > 20000
orderby invoice.VendorID
select new {invoice.VendorID, invoice.InvoiceTotal};

Description

e When a LINQ query is compiled, it’s translated into a method-based query. You can also
code method-based queries explicitly.

e To code a method-based query, you use lambda expressions. A lambda expression
consists of an unnamed function that evaluates a single expression and returns its value.

e [ambda expressions are typically passed as arguments to methods that accept a delegate,
which specifies the signature of a method. Many of the LINQ methods, including the
Where, OrderBy, and Select methods shown above, accept delegates as parameters.

e Because method-based queries and lambda expressions are more difficult to work with
than queries that use C# clauses, we recommend you use clauses whenever possible.

Figure 11-12 How to use lambda expressions

373

374

Section4 How to use LINQ

The last example is a query that performs the same function as the previous
query but uses C# clauses instead of extension methods. If you compare these
two queries, I think you’ll agree that the one that uses C# clauses is easier to
understand. Because of that, we recommend you use this technique whenever
possible.

How to use extension methods that implement
aggregate functions

In addition to the extension methods you’ve seen in the last two topics,
LINQ provides methods that aren’t associated with C# clauses. In this topic,
you’ll learn about the extension methods that implement aggregate functions.
You’ll learn about some additional extension methods later in this book.

The table at the top of figure 11-13 lists the extension methods LINQ
provides for performing aggregate functions. These methods perform an opera-
tion on a set of elements. If you review the descriptions of these methods, you
shouldn’t have any trouble understanding how they work.

The first example in this figure shows how you can use an aggregate method
to summarize the results of a query. Here, the Average method is called on a
query that returns the invoice totals for a list of invoices. Notice that when you
call a method like this on query results, the query expression must be enclosed
in parentheses. Also notice that because the query must be executed before the
average can be calculated, the query is executed immediately. Then, the result
returned by the Average method is assigned to a decimal variable.

You can also use the aggregate methods to summarize the groups defined by
a query. This is illustrated in the second example in this figure. Here, the
invoices in a list of Invoice objects are grouped by vendor ID. Then, the where
clause uses the Sum method to calculate an invoice total for each vendor so that
only those vendors with invoice totals over $10,000 are returned by the query.
Notice that a lambda expression is used within the Sum method to indicate
which field is to be totaled. In contrast, it wasn’t necessary to use a lambda
expression in the first example because the query returns a single field.

The Sum method is also used in the orderby clause to sort the grouped
invoice totals in descending sequence, and it’s used in the select clause to
include the invoice total for each vendor in the query results along with the
vendor ID. Then, the code that executes the query uses a foreach statement to
loop through the results and display the vendor ID and invoice total for each
vendor.

Chapter 11~ An introduction to LINQ

Extension methods that implement aggregate functions

Method Description

All Returns a Boolean value that specifies if all the elements of a collection satisfy a
condition.

Any Returns a Boolean value that specifies if any of the elements of a collection satisfy a
condition.

Average Calculates the average of a given field or expression.

Count Counts the number of elements in a collection or the number of elements that satisfy
a condition.

LongCount Same as Count, but returns the count as a long type.

Max Calculates the maximum value of a given field or expression.

Min Calculates the minimum value of a given field or expression.

Sum Calculates the sum of a given field or expression.

A query expression that gets the average of invoice totals

decimal invoiceAvg = (from invoice in invoicelist
select invoice.InvoiceTotal) .Average() ;

A LINQ query that uses an aggregate with groups
A query expression that gets invoice totals by vendor

var largeVendors =
from invoice in invoicelist
group invoice by invoice.VendorID
into invoiceGroup
where invoiceGroup.Sum(i => i.InvoiceTotal) > 10000
orderby invoiceGroup.Sum(i => i.InvoiceTotal) descending
select new { ID = invoiceGroup.Key,
Total = invoiceGroup.Sum(i => i.InvoiceTotal) };

Code that displays the query results

string totalDisplay = "Vendor ID\tInvoice Total\n";
foreach (var vendor in largeVendors)
{

totalDisplay += vendor.ID + "\t\t" +
vendor.Total.ToString ("c") + "\n";

}
MessageBox.Show(totalDisplay, "Invoice Totals by Vendor");
Description

e The aggregate methods can be called on the result of a query to return a single value or
on a group within a query to return a value for each group. Lambda expressions can be
used with aggregate methods to identify the operation that’s performed.

e Because C# doesn’t provide keywords for the methods shown above, you can only use
them by executing the methods directly.

Figure 11-13 How to use extension methods that implement aggregate functions

375

376

Section4 How to use LINQ

A Vendor Balances application that
uses LINQ

The next three topics of this chapter present a simple application that uses a
LINQ query to display vendor and invoice information on a form. This will help
you see how you can use a query from within a C# application.

The user interface for the application

Figure 11-14 shows the user interface for the Vendor Balances application.
As you can see, this interface consists of a single form that lists the balance due
for each vendor that has a balance due. This list is sorted by balance due in
descending sequence.

The list in this form is displayed in a ListView control. If you aren’t familiar
with this control, you may want to refer to Visual Studio help to find out how it
works. For the purposes of this application, though, you just need to set the
View property of this control to Details, and you need to define the column
headings as described in this figure. In addition, you need to know how to load
data into the control as shown in the next figure.

The classes used by the application

Figure 11-15 also summarizes the classes used by this application. As you
can see, the Invoice class represents a single invoice in the Invoices table, and
the Vendor class represents a single vendor in the Vendors table. Then, the
InvoiceDB class contains a single method named Getlnvoices that retrieves all
the invoices from the Invoices table and returns them as a List<Invoice> object.
Similarly, the VendorDB class contains a single method named GetVendors that
retrieves all the vendors from the Vendors table and returns them as a
List<Vendor> object. Finally, the PayablesDB class contains a method named
GetConnection that returns a connection to the Payables database.

All of these classes are stored in a class library named PayablesData.
Because you saw classes like these in the previous section of this book, I won’t
show you the code for these classes here. Instead, I'll just present the code for
the form so you can see the query that’s used by this application.

Chapter 11~ An introduction to LINQ

The Vendor Balances form

Vendor Balances g@

Wendor Balance Due

$30,327.24

$579.42

Ford Motor Credit Company $503.20
Blue Cross $224.00
Federal Express Corporation $210.89
Cardinal Business Media. Inc. $30.36
[ata Reproductions Corp $85.31

Classes used by the application

Class Description

Invoice Defines one property for each column in the Invoices table, along with a property
named BalanceDue that represents the unpaid amount of the invoice.

Vendor Defines one property for each column in the Vendors table.

InvoiceDB Defines a single method named Getlnvoices that retrieves all the columns and rows
from the Invoices table and stores them in a List<Invoice> object.

VendorDB Defines a single method named GetVendors that retrieves all the columns and rows
from the Vendors table and stores them in a List<Vendor> object.

PayablesDB Defines a single method named GetConnection that’s used by the Getlnvoices and
GetVendors methods to get a connection to the Payables database.

Description

e The Vendor Balances form uses a ListView control to display a list of the balance due for
each vendor with unpaid invoices. The list is sorted by balance due in descending
sequence.

e To make this work, the View property of the ListView control is set to Details, which
causes the data items to be displayed in columns. In addition, the column headers for the
control were added using the ColumnHeader Collection Editor. To display this editor,
you can select Edit Columns from the smart tag menu for the control. Then, you can set
the Text, TextAlign, and Width properties for each column as necessary.

e The Vendor Balances application uses a class library named PayablesData that contains
the classes listed above.

Figure 11-14 A Vendor Balances application that uses LINQ

377

378

Section4 How to use LINQ

The code for the form

Figure 11-15 shows the code for the Vendor Balances form. All of this code
is placed within the Load event handler for the form so the list is displayed
when the form is loaded. To start, this code declares the variables that will store
the lists of vendors and invoices. Then, it uses the methods of the InvoiceDB
and VendorDB classes to load data into these lists. The next statement defines
the query expression. Because this expression is similar to others you’ve seen in
this chapter, you shouldn’t have any trouble understanding how it works. So I'll
just summarize it for you.

First, notice that the query expression joins data from the invoice and
vendor lists. That’s necessary because the vendor name will be displayed on the
form along with the balance due. Second, notice that the invoices are grouped
by vendor using the Name property of each vendor. Then, within the where
clause, the Sum method is used to calculate the balance due for each vendor so
the elements that are returned are restricted to vendors who have a balance. The
Sum method is also used in the orderby clause to sort the list by the balance due
so that the largest balances are displayed first. And it’s used in the select clause
to include the balance due in the query results along with the vendor name.

To load data into the ListView control, this code uses a foreach statement
that loops through the query results. But first, this code checks that at least one
element was returned by the query. If not, it displays a message indicating that
all invoices are paid in full. Otherwise, it declares a variable named i that will be
used as an index for the items that are added to the ListView control.

For each element in the query results, the foreach loop starts by adding the
Name property to the Items collection of the ListView control. That causes the
name to be displayed in the first column of the control. Then, the next statement
adds the Due property as a subitem of the item that was just added. That causes
this value to be displayed in the column following the vendor name column.
Notice that this statement refers to the item by its index. Then, the last statement
in the loop increments the index variable.

Chapter 11~ An introduction to LINQ

The code for the Vendor Balances form

public partial class Forml : Form
private void Forml Load(object sender, EventArgs e)
List<Invoice> invoiceList = null;
List<Vendor> vendorList = null;
try
invoiceList = InvoiceDB.GetInvoices();
vendorList = VendorDB.GetVendors() ;
var vendorsDue =
from invoice in invoicelist
join vendor in vendorList
on invoice.VendorID equals vendor.VendorID
group invoice by vendor.Name into invoiceGroup
where invoiceGroup.Sum(i => i.BalanceDue) > 0
orderby invoiceGroup.Sum(i => i.BalanceDue)
descending
select new
Name = invoiceGroup.Key,
Due = invoiceGroup.Sum(i => i.BalanceDue)
if (vendorsDue.Count() > 0)
int 1 = 0;
foreach (var vendor in vendorsDue)
lvVendorsDue.Items.Add (vendor.Name) ;
lvVendorsDue.Items [i] . SubItems.Add (
vendor.Due.ToString ("c")) ;
i += 1;
else
MessageBox.Show("All invoices are paid in full.",
"No Balances Due");
this.Close();
catch (Exception ex)
MessageBox.Show(ex.Message, ex.GetType() .ToString()):;
this.Close();
Description

e The LINQ query used by this application joins data from the Vendors and Invoices
tables, groups the data by vendor, and calculates the balance due for each vendor. Only
vendors with a balance due greater than zero are included in the query results.

Figure 11-15 The code for the Vendor Balances form

379

380

Section 3 ADO.NET and web applications

Perspective

In this chapter, you learned the basic skills for coding and executing LINQ
queries that work with generic lists. With these skills, you should be able to create
queries that perform a variety of functions. However, there’s a lot more to learn
about LINQ than what’s presented here. In particular, you’ll want to learn about
the three implementations of LINQ for ADO.NET. You’ll learn about two of these
implementations, LINQ to DataSet and LINQ to SQL, in the next three chapters.
Then, in chapter 18, you’ll learn how to use LINQ to Entities, which uses the new
Entity Framework.

Terms

Language-Integrated Query (LINQ)
object-relational mapping

LINQ to XML
deferred execution

query variable
immediate execution
range variable
projection

object initializer

query operator
extension method
method-based query
query expression
enumerable type

LINQ to Objects anonymous type
LINQ to DataSet alias

LINQ to SQL lambda expression
LINQ to Entities lambda operator
LINQ to ADO.NET delegate

Exercise 11-1 Create the Vendor Balances
application

In this exercise, you’ll develop and test the Vendor Balances application that
was presented in this chapter.

Design the form

1. Open the project that’s in the CAADO.NET 3.5 C#\Chapter
11\Display VendorsDue directory. In addition to the default form, this project
contains the business and database classes needed by the application.

2. Add a ListView control to the form, and set the View property of this control to
Details.

3. Use the smart tag menu for the ListView control to display the ColumnHeader
Collection Editor. Then, define the column headings for this control so they
look like the ones shown in figure 11-14.

Chapter 11~ How to use SQL data source controls

Add code to display the invoice data

4.

Open the Invoice, InvoiceDB, and PayablesDB classes and review the code that they
contain. In particular, notice that the Getlnvoices method in the InvoiceDB class
returns the invoices in a List<Invoice> object.

Add an event handler for the Load event of the form. Then, use the Getlnvoices
method to get the list of invoices, and store this list in a variable.

Define a query expression that returns all the invoices in the invoice list that have a
balance due greater than zero. Sort the invoices by balance due in descending
sequence within vendor ID.

Use a foreach statement to execute the query and load the results into the ListView
control.

Run the application to see how it works. At this point, the list should include one item
for each invoice with a balance due. Make any necessary corrections, and then end the
application.

Enhance the application to display the vendor names

9.

10.

11.

12.

13.

Open the Vendor and VendorDB classes and review the code they contain. In
particular, notice that the GetVendors method in the VendorDB class returns the
vendors in a List<Vendor> object.

Add code at the beginning of the Load event handler that uses the GetVendors method
to get the list of vendors, and store this list in a variable.

Modify the query expression so it joins the data in the vendor list with the data in the
invoice list, so it sorts the results by balance due in descending sequence within
vendor name, and so only the fields that are needed by the form are returned by the

query.
Modity the foreach statement so it adds the vendor name instead of the vendor ID to
the ListView control.

Run the application to make sure it works correctly. Although the list will still include
one item for each invoice with a balance due, the items will be listed by vendor name
instead of vendor ID.

Enhance the application to group the invoices by vendor

14.

15.

Modify the query expression so it groups the invoices by vendor name. Then, use the
Sum method in the where clause to calculate the balance due for each vendor so that
only vendors with a balance due are included in the query results. Use the Sum
method in the orderby clause to sort the vendor balances in descending sequence. (Be
sure to omit the vendor name from the sort sequence since it’s no longer needed.) And
use the Sum method in the select clause to include the balance due for each vendor in
the query results.

Run the application to make sure it works correctly. If it does, the form should look
like the one shown in figure 11-14. When you’re done, close the solution.

381

How to build your LINQ skills

The easiest way is to let Murach’s ADO.NET 3.5. LINQ,
and the Entity Framework with C# 2008 be your guide! So

if you’ve enjoyed this chapter, I hope you’ll get your own
copy of the book today. You can use it to:

Teach yourself how to develop database applications from
scratch using RAD tools, ADO.NET coding, LINQ, and
the Entity Framework

Pick up a new skill whenever you want or need to by Mike Murach, Publisher
focusing on material that’s new to you

Look up coding details or refresh your memory on forgotten details when you’re
in the middle of developing a database application

Loan to your colleagues who are always asking you questions about database
programming

To get your copy, you can order online at www.murach.com or call us at
1-800-221-5528 (toll-free in the U.S. and Canada). And remember, when you order
directly from us, this book comes with my personal guarantee:

100% Guarantee

You must be satisfied. Each book you buy directly
from us must outperform any competing book or
course you've ever tried, or send it back within 90
days for a full refund...no questions asked.

Thanks for your interest in Murach books!

(W

http://www.murach.com/books/dcs8/index.htm
http://www.murach.com/books/dcs8/index.htm
http://www.murach.com

