
	

MEAP	
 Edition	

Manning	
 Early	
 Access	
 Program	

Copyright	
 2010	
 Manning	
 Publications	

	

For	
 more	
 information	
 on	
 this	
 and	
 other	
 Manning	
 titles	
 go	
 to	
 	

www.manning.com	

Last saved: 2/25/2010 Ian Stirk / Dynamic Management Views In Action 1

©Manning Publications Co. Please post comments or corrections to the Author Online forum:

http://www.manning-sandbox.com/forum.jspa?forumID=639

Part 1: Starting the Journey

1. Welcome to the Dynamic Management Views Goldmine
2. Common Patterns

Part 2: DMV Discovery

3. Using Index related DMVs
4. Using Execution related DMVs
5. Using Execution related DMVs - Extras
6. Using SQL Server Operating System related DMVs
7. Using CLR related DMVs
8. Using Transaction related DMVs
9. Using I/O related DMVs
10. Using Database related DMVs
11. Miscellany

Part 3: Next Steps

12. Towards a self healing database
13. Round up

2 Ian Stirk / Dynamic Management Views In Action Last saved: 2/25/2010

©Manning Publications Co. Please post comments or corrections to the Author Online forum:

http://www.manning-sandbox.com/forum.jspa?forumID=639

1
Welcome to the Dynamic

Management Views Goldmine

This chapter covers

 What Dynamic Management Views are

 Why they are important

 Ready to run practical examples

Welcome to the world of Dynamic Management Views (DMVs). How would you like to fix

problems on your SQL Servers with very little effort? Or fix problems before they become

noticeable by irate users? Would you like to quickly discover the slowest SQL queries on your

servers? Or get details of missing indexes that could significantly improve the performance of

your queries? All these things and more are easily possible, typically in a matter of seconds,

using DMVs.

In a nutshell, DMVs are views on internal SQL Server metadata, which can be used to

significantly improve the performance of your SQL queries, often by an order of magnitude.

A more thorough definition of DMVs follows on the next page.

The first part of fixing any problem is knowing what the underlying problem is. DMVs can

give you precisely this information. DMVs will pinpoint where many of your problems are,

often before they become painfully apparent.

DMVs are an integral part of Microsoft’s flagship database SQL Server. Although they

have existed since SQL Server 2005, their benefits are still relatively unknown, even by

experienced software developers and Database Administrators (DBAs). Hopefully this book

will help correct this deficit.

The aim of this book is to present and explain, in short snippets of prepackaged SQL that

can be used immediately, DMV queries that will give you a valuable insight into how your

Last saved: 2/25/2010 Ian Stirk / Dynamic Management Views In Action 3

©Manning Publications Co. Please post comments or corrections to the Author Online forum:

http://www.manning-sandbox.com/forum.jspa?forumID=639

SQL Server and the queries running on it can be improved, often dramatically, quickly and

easily.

In this chapter you’ll learn what DMVs are, the kinds of data they contain, and the types

of problem DMVs can solve. We’ll provide several example code snippets that will you’ll find

are immediately useful. DMVs will be discussed briefly in the context of other problem

solving tools, and related structures (for example indexes and statistics). Finally, we’ll outline

the major groups the DMVs are divided into, and the ones we’ll be concentrating on.

I am sure after reading this chapter you will be pleasantly surprised when you discover

the wealth of information that is available for free within SQL Server that can be accessed via

DMVs, and the quite often impressive impact using this information can have. The DMV data

is already out there waiting to be harvested, in so many ways it really is a goldmine!

1.1 What are Dynamic Management Views?

As queries run on a SQL Server database, SQL Server automatically records information

about the activity that is taking place, internally into structures in memory, this information

can be accessed via DMVs. So DMVs are basically SQL views on some pretty important

internal memory structures.

Lots of different types of information is recorded which can be used for subsequent

analysis, with the aim of improving performance, trouble shooting problems, or just gaining

a better insight into how SQL Server works.

DMV information includes metrics that relate to indexes, query execution, the operating

system, common language runtime (CLR), transactions, security, extended events, resource

governor, service broker, replication, query notification, objects, input/output (I/O), full-text

search, databases, database mirroring, change data capture (CDC), and much more.

Additionally, there are many corollary areas that enhance and extend the DMV output, we

will discuss these a little later.

Don’t worry if you’re not familiar with all these terms at the moment, the purpose of this

book is to help explain them, present examples of how you can use them to improve the

performance and understanding of your SQL queries and SQL Server itself.

1.1.1 A glimpse into SQL Server’s internal data

As an example of what DMV information is captured, consider what happens when you

run a query. An immense range of information is recorded, including:

 The query’s cached plan (this describes at a low-level how the query is executed)

 What indexes were used

 What indexes the query would like to use but are missing

4 Ian Stirk / Dynamic Management Views In Action Last saved: 2/25/2010

©Manning Publications Co. Please post comments or corrections to the Author Online forum:

http://www.manning-sandbox.com/forum.jspa?forumID=639

 How much IO occurred (both physical and logical)

 How much time was spent actually executing the query

 How much time was spent waiting on other resources

 What resources the query waiting upon

Being able to retrieve and analyze this information will not only give you a better

understanding of how your query works, but will also allow you to produce better queries

that take advantage of the available resources.

In addition to DMVs, there are several related functions that work in conjunction with

DMVs, called Dynamic Management Functions (DMFs). In many ways DMFs are similar to

standard SQL functions, being called repeatedly with a DMV supplied parameter. For

example, the DMV sys.dm_exec_query_stats records details of the SQL being processed via

a variable called sql_handle, if this sql_handle is passed as a parameter to the DMF

sys.dm_exec_sql_text, the DMF will return the actual SQL text of the stored procedure or

batch associated with this sql_handle.

All DMVs and DMFs belong to the sys schema, when you reference them you must supply

this schema name. For example to query the dm_exec_requests DMV, run the following:

SELECT * FROM sys.dm_exec_requests

Note, this query will give you raw details of the various requests that are currently

running on your SQL Server, again don’t worry if the output doesn’t make much sense at the

moment. We’ll provide much more useful and understandable queries that use

sys.dm_exec_requests later in the book, in the chapter related to Execution DMVs.

1.1.2 Aggregated results

The data shown via DMVs is accumulative, since the last SQL Server reboot or restart.

Often this is useful, because we want to know the sum total effect for each of the queries

that have run on the server or a given database.

However, if we are only interested in the actions of a given run of a query or batch, we

can determine the affect of the query by taking a snapshot of the relevant DMV data, run our

query, and then take another snapshot of the DMV data. Getting the delta between the two

snapshots will provide us with details of the effect of the query that was run. An example of

this approach is shown later, in the chapter concerning common patterns.

1.1.3 Impact of running DMVs

Last saved: 2/25/2010 Ian Stirk / Dynamic Management Views In Action 5

©Manning Publications Co. Please post comments or corrections to the Author Online forum:

http://www.manning-sandbox.com/forum.jspa?forumID=639

Typically, when we query the DMVs to extract important diagnostic information, this

querying has a minimal affect on the server and its resources. This is because the data is in

memory and already calculated, we just need to retrieve it. To further reduce the impact of

querying the DMVs, the sample code is typically prefixed with a statement that ignores locks

and doesn’t acquire any locks.

There are cases where the information isn’t initially or readily available in the DMVs. In

these cases, the impact of running the query may be significant. Luckily these DMVs are few

in number and will be highlighted in the relevant section. One such DMV is used when

calculating the degree of index fragmentation (sys.dm_db_index_physical_stats).

In summary, compared with other methods of obtaining similar information, for example

by using the Database Tuning Advisor or SQL Server Profiler, using DMVs is relatively

unobtrusive and has little impact on the system performance.

1.1.4 Part of SQL Server 2005 onwards

DMVs and DMFs have been an integral part of SQL Server since version 2005 onwards. In

SQL Server 2005 there are 89 DMVs (and DMFs), and in SQL Server 2008 there are 136

DMVs. With this in mind, this book will concentrate on SQL Server 2005 and onwards. It is

possible to discover the range of these DMVs by examining their names, by using the

following query:

SELECT name, type_desc FROM sys.system_objects WHERE name LIKE
'dm_%' ORDER BY name

In versions of SQL Server prior to SQL Server 2005, getting the level of detailed

information given by DMVs, is either very difficult or impossible. For example, to obtain

details of the slowest queries, we would typically have to run SQL Trace (this is the precursor

of SQL Server Profiler) for a given duration and then spend often a considerable amount of

time analyzing and aggregating the results. This being made more difficult since the

parameters for the same queries would often differ. The corresponding work using DMVs can

often be done in seconds.

1.2 The problems DMVs can solve

In the section entitled “What Are Dynamic Management Views”, I briefly mentioned the

different types of data that DMVs record. I can assure you this range is matched by depth

too. DMVs allow you to view a great deal of internal SQL Server information that is a great

starting point for determining the cause of a problem and provide potential solutions to fix

many problems or give you a much better understanding of SQL Server and your queries.

6 Ian Stirk / Dynamic Management Views In Action Last saved: 2/25/2010

©Manning Publications Co. Please post comments or corrections to the Author Online forum:

http://www.manning-sandbox.com/forum.jspa?forumID=639

The problems DMVs can solve can be grouped into Diagnosing Problems, Performance

Tuning, and Monitoring. In the following sections we will discuss each of these in turn. Note

that DMVs are not the sole method of targeting the source of a problem or improving

subsequent performance, but they can be used together with other tools to identify and

correct concerns.

1.2.1 Diagnosing Problems

Diagnosing problems is concerned with identifying the underlying cause of the problem.

This is perhaps the most common use of DMVs. It is possible to query the DMVs to diagnose

many common problems including your slowest queries, the commonest causes of

waiting/blocking, unused indexes, files having the most I/O, and lowest re-use of cached

plans. Each of these areas of concern and more could be starting points to improving the

performance of your SQL Server, whether you’re a DBA maintaining a mature server

environment or a developer working on a new project.

It is possible to view problem diagnosis at various levels, including from a server

perspective, a database perspective or investigating a particular known troublesome query.

Applying the correct filtering will allow us to use the DMVs at each of these levels.

Sometimes, identified problems are not real problems. For example, there may be

queries that run very slowly but, they run at a time when it doesn’t cause anyone any

concern. So whilst we could fix them, it would be more appropriate to target our problem

solving skills on problems that are deemed to be more important.

No one ever says their queries are running too fast, instead, users typically report how

slow their queries seem to be running. Taking the slow running query as an example of a

performance problem, we can use the DMVs to inspect the query’s cached plan to determine

how the query is accessing its data, how resources are being used (for example, if indexes

are being used or table scans), if the statistics are out of date, identify any missing indexes,

and target the particular statement or access path that is causing the slowness. Later we will

look at interpreting the cached plan with a view to identifying performance bottlenecks.

Knowing the areas of the query that are slow allows you to try other techniques (for

example, adding a new index) to see its affect on subsequent performance. Applying these

new features leads us into the area of performance tuning. We will investigate a great many

ways of identifying problems in the rest of the book.

One final point, sometimes if a query is too complicated, and contains lots of

functionality, then try breaking it down into smaller steps, not only might this highlight the

problem area with finer granularity, it might also solve it! Maybe the optimizer has more

choices available to it with simpler queries and thus generates a better plan. We can see if

this is the case by examining the relevant execution DMVs, as will become clear in the

chapter relating to execution DMVs.

Last saved: 2/25/2010 Ian Stirk / Dynamic Management Views In Action 7

©Manning Publications Co. Please post comments or corrections to the Author Online forum:

http://www.manning-sandbox.com/forum.jspa?forumID=639

1.2.2 Performance Tuning

Performance tuning is concerned with applying suggested remedies to problems identified

by problem diagnosis with a view to improving performance. Examination of the information

shown by the DMVs should highlight areas where improvement can be made, for example,

applying a missing index, removing contention/blocking, degree of fragmentation etc. Again

the query’s cached plan is a primary source of ideas for improvement.

Measurement of any improvement is typically reflected in time or IO counts, and can be

made with traditional tools such as turning on STATISITICS IO or STATISITICS TIME SQL

commands, or using a simple stopwatch. However, for more consistent results we can look at

the time recording provided by the DMVs. This includes, for each individual SQL statement,

time spent on the CPU (worker_time), and total time (elapsed_time). A large difference

between these 2 times indicates a high degree of waiting/blocking may be occurring.

Similarly DMVs also record the amount of IO (reads/write at both the physical and logical

level) that can be used to measure the effectiveness of a query, since less IO typically

reflects a faster query.

Again we can examine the cached plan after the improvements have been made to

determine if the bottleneck has been removed. Performance tuning is an iterative process.

This new cached plan and DMV metrics could be used for further improvements, but again

we need to ask if any remaining problem is worth solving, since we should always aim to fix

what is deemed to be the most important problems first.

We need to be careful of the impact performance-based changes can have on the

maintainability of systems, often these two needs are diametrically opposed since complexity

is often increased. As Knuth pointed out, premature optimization is the root of all software

evil. We’ll discuss this in more detail in the chapter concerning execution DMVs.

1.2.3 Monitoring

A large group of DMVs (those starting with sys.dm_exec_) relates to what is currently

executing on the server. By repeatedly querying the relevant DMVs we get a view of the

status of the server and also its history. Often this transient information is lost, but it is

possible to store it for later analysis (for example into temporary or semi-permanent tables).

Sometimes you have problems with the overnight batch process, reported as timeout or

slow running queries, and it would be nice to know what SQL is running during the time of

this problem, giving you a starting point for further analysis.

Whilst you might know what stored procedure is currently running on your server (from

your overnight batch scheduler or sp_who2), do you know what specific lines of SQL are

executing? How are the SQL queries interacting? Is blocking occurring? We can get this

information by using DMVs combined with a simple monitoring script. I have used such a

script often to examine problems that occur during an overnight batch run.

8 Ian Stirk / Dynamic Management Views In Action Last saved: 2/25/2010

©Manning Publications Co. Please post comments or corrections to the Author Online forum:

http://www.manning-sandbox.com/forum.jspa?forumID=639

Note this example uses routines I have created and fully documented in the web links

given in the code sample below (so you see, not only is code re-use good, but article re-use

too). Rather than talk in detail about the contents of these two utilities, I’ll talk about them

as black boxes (if you do want to find out more about them, look here:

http://visualstudiomagazine.com/features/article.aspx?editorialsid=2490 and here:

http://www.sqlservercentral.com/articles/DMV/64425/). This way you’ll be able to adapt this

simple monitor pattern and possibly replace the 2 utilities with your own favorite utilities.

Later in this chapter I will go through the code that forms the basis of one of stored

procedures (dba_WhatSQLIsRunning). Listing 1.1 shows the code for a simple monitor.

Listing 1.1 A Simple Monitor

SET TRANSACTION ISOLATION LEVEL READ UNCOMMITTED

WAITFOR TIME '19:00:00' #A
GO

PRINT GETDATE()
EXEC master.dbo.dba_BlockTracer #B

IF @@ROWCOUNT > 0 #C
BEGIN
 SELECT GETDATE() AS TIME
 EXEC master.dbo.dba_WhatSQLIsRunning #D
END

WAITFOR DELAY '00:00:15' #E
GO 500 #F

#A Wait until 7pm
#B Is anything blocked?
#C If blocking occurring...
#D Show SQL running
#E Wait 15 seconds
#F Repeat (500 times)

The above code snippet waits until a specified time (7pm in the above example), and

then prints the date/time and runs a routine called dbo.dba_BlockTracer. If anything is

blocked, dbo.dba_BlockTracer displays information about both the blockers and the blocked

items. Additionally, if anything is blocked (and output produced) the variable @@ROWCOUNT

will have a non-zero value, this causes the output the date and time and list all the SQL that

is running (including the batch/stored procedure and the individual SQL statement within it

that is running). The utility then waits a specified time (15 seconds in the above example)

and repeats. All this is repeated (except waiting until 7pm) a number of times, as specified

by the last GO statement (500 in the above example).

Last saved: 2/25/2010 Ian Stirk / Dynamic Management Views In Action 9

©Manning Publications Co. Please post comments or corrections to the Author Online forum:

http://www.manning-sandbox.com/forum.jspa?forumID=639

The routines show not only what is being blocked but also details of what SQL is running

when any blocking occurs. When a SQL query runs, SQL Server assigns it a unique identifier,

called the session id or the SQL Server process id (spid). You will notice the output in the

various grids contain spids that can be used to link the output from the 2 utilities together.

An example of the type of output for this query is given in figure 1.1:

Figure 1.1 Output showing if anything is blocked, and what individual SQL queries are running

The first 2 grids show the root blocking spid (this is the cause of the blocking), and the

blocked spid. This is followed by a grid showing the date and time the blocking occurred.

Finally details of everything that is currently running is shown, this includes the individual

line of SQL that is running together with the parent query (stored procedure or batch).

A special mention should be made about the humble GO command. The GO command will

execute the batch of SQL statements that occurs after the last GO statements. If GO is

followed by a number, then it will execute that number of times. This is handy in many

circumstances, for example, after an INSERT statement if you put GO 50, the insert will

occur 50 times.

This ‘GO number’ pattern can be extended to provide a simple

concurrency/blocking/deadlock test harness. If a similar batch of SQL statements are

entered into 2 or more distinct windows within SQL Server Management Studio (SSMS), and

the statements are followed with a GO 5000, and all windows run at the same time, the

effect of repeatedly running the SQL at the same time can be discovered.

10 Ian Stirk / Dynamic Management Views In Action Last saved: 2/25/2010

©Manning Publications Co. Please post comments or corrections to the Author Online forum:

http://www.manning-sandbox.com/forum.jspa?forumID=639

It is of course possible to determine what is running irrespective of any blocking by using

an even simpler monitoring query, given in listing 1.2 below:

Listing 1.2 An even Simpler Monitor

SET TRANSACTION ISOLATION LEVEL READ UNCOMMITTED

WAITFOR TIME '19:00:00' #A
GO

SELECT GETDATE() AS TIME
EXEC master.dbo.dba_WhatSQLIsRunning #B

WAITFOR DELAY '00:00:15' #C
GO 500 #D

#A Wait until 7pm
#B Show running SQL
#C Wait 15 seconds
#D Repeat (500 times)

The query waits for a given time (7pm), and then displays the date and time together

with details of what SQL queries are running, it then waits for a specified period (15 seconds)

and repeats (but does not wait until 7pm again!).

Queries often compete for resources, for example, exclusive access to a given set of rows

in a table. This competition causes related queries to wait until the resource is free. This

waiting affects performance. We can query the DMVs to determine what queries are waiting

(being blocked) the most, and aim to improve them. We will identify the most blocked

queries later, in the chapter that discusses execution DMVs.

We can use the simple monitor utility discussed above to identify why these identified

queries are being blocked, the DMVs will tell us what is blocked, but they don’t identify what

is blocking them. The monitoring utility can do this. The monitor utility can be a very

powerful tool, in identifying why and how the most blocked queries are being blocked.

1.3 DMV examples

The purpose of this section is to illustrate how easy it is to retrieve some really valuable

information from SQL Server by querying the DMVs.

Don’t worry if you don’t understand all the details given in these queries immediately. I

will not explain in detail here how the query performs its magic, after all this is meant to be a

sample of what DMVs are capable of. I will however explain these queries fully later in the

book.

Last saved: 2/25/2010 Ian Stirk / Dynamic Management Views In Action 11

©Manning Publications Co. Please post comments or corrections to the Author Online forum:

http://www.manning-sandbox.com/forum.jspa?forumID=639

All the examples are prefixed with a statement concerning Isolation Level. This

determines how the subsequent SQL statements in the batch interact with other running SQL

statements. The statement sets the isolation level to read uncommitted. This ensures we can

read data without waiting for locks to be released or acquiring locks ourselves, resulting in

the query running more quickly with minimal impact on other running SQL queries. The

statement used is:

SET TRANSACTION ISOLATION LEVEL READ UNCOMMITTED

It is often the case that we have several different databases running on the same server.

A consequence of this is, no matter how optimal your individual database may be, another

database on the server, running sub-optimally, may affect the server’s resources and this

may impact the performance of your database. Because of this, we offer scripts that inspect

the DMVs across all the databases on the server. It is of course possible to target the queries

to a specific database on the server by supplying a relevant WHERE clause (many other

filters can be applied). Bear in mind the purpose of these samples is to illustrate quickly how

much useful information is freely and easily available within the DMVs. Richer versions of

these routines will be provided later in the book.

1.3.1 Find your slowest queries
Does anyone ever complain “my queries are running too fast!” Almost without exception

the opposite is the case, as queries are often reported as running too slowly. If you run the

SQL query given in listing 1.3 you will identify the 20 slowest queries on your server.

Listing 1.3 Find your slowest queries

SET TRANSACTION ISOLATION LEVEL READ UNCOMMITTED

SELECT TOP 20
CAST(total_elapsed_time / 1000000.0 AS DECIMAL(28, 2)) #A

AS [Total Elapsed Duration (s)]
, execution_count
, SUBSTRING (qt.text,(qs.statement_start_offset/2) + 1, #B
 ((CASE WHEN qs.statement_end_offset = -1
 THEN LEN(CONVERT(NVARCHAR(MAX), qt.text)) * 2
 ELSE

qs.statement_end_offset
 END - qs.statement_start_offset)/2) + 1) AS [Individual Query]
, qt.text AS [Parent Query]
, DB_NAME(qt.dbid) AS DatabaseName
, qp.query_plan
FROM sys.dm_exec_query_stats qs
CROSS APPLY sys.dm_exec_sql_text(qs.sql_handle) as qt
CROSS APPLY sys.dm_exec_query_plan(qs.plan_handle) qp
INNER JOIN sys.dm_exec_cached_plans as cp
 on qs.plan_handle=cp.plan_handle

12 Ian Stirk / Dynamic Management Views In Action Last saved: 2/25/2010

©Manning Publications Co. Please post comments or corrections to the Author Online forum:

http://www.manning-sandbox.com/forum.jspa?forumID=639

ORDER BY total_elapsed_time DESC #C

#A Get query duration
#B Extract SQL statement
#C Sort by slowest queries

The DMV sys.dm_exec_query_stats contains details of various metrics that relate to an

individual SQL statement (within a batch). These metrics include query duration

(total_elapsed_time), the number of times the query has executed (execution_count).

Additionally, it records details of the offsets of the individual query within the parent query.

To get details of the parent query and the individual query, the offset parameters are passed

to the DMF sys.dm_exec_sql_text. The Cross Apply statement can be thought of as a join to

a table function that in this case takes a parameter,. Here the parameter is the id of the

cached plan that contains the textual representation of the query. The query’s cached plan is

also output, as XML. The results are sorted by the total_elapsed_time. To limit the amount

of output only the slowest 20 queries are reported on. Running the slowest queries query on

my server gives the results shown in figure 1.2

Figure 1.2 Identify the slowest SQL queries on your server, sorted by duration

The results show the cumulative impact of individual queries, within a batch or stored

procedure. Knowing the slowest queries will allow you to make targeted improvements,

confident in the knowledge that any improvement to these queries will have the biggest

impact on performance.

The cached plan is probably the primary resource for discovering why the query is

running slowly, and often will give an insight into how the query can be improved.

The NULL values in the Databasename column mean the query was run either ad hoc or

using prepared SQL (i.e. not as a stored procedure). This itself can be interesting since it

indicates areas where stored procedures are not being re-used, and possible areas of

security concern. Later, an improved version of this query will get the underlying database

name for the ad-hoc or prepared SQL queries from another DMV source.

Last saved: 2/25/2010 Ian Stirk / Dynamic Management Views In Action 13

©Manning Publications Co. Please post comments or corrections to the Author Online forum:

http://www.manning-sandbox.com/forum.jspa?forumID=639

1.3.2 Find those missing indexes

Indexes are a primary means of improving SQL performance. However, due to various

reasons, for example, inexperienced developers or changing systems, useful indexes may

not always have been created. Running the SQL query given in listing 1.4 will identify the top

20 indexes, ordered by impact (Total Cost), that are missing from you system.

Listing 1.4 Find those missing indexes

SET TRANSACTION ISOLATION LEVEL READ UNCOMMITTED

SELECT TOP 20

ROUND(avg_total_user_cost * avg_user_impact * #A
 (user_seeks + user_scans),0) AS [Total Cost]

, statement AS TableName
, equality_columns
, inequality_columns
, included_columns

FROM sys.dm_db_missing_index_groups g
INNER JOIN sys.dm_db_missing_index_group_stats s
 ON s.group_handle = g.index_group_handle
INNER JOIN sys.dm_db_missing_index_details d
 ON d.index_handle = g.index_handle
ORDER BY [Total Cost] DESC #B

#A Calculate cost
#B Sort by cost

The DMV sys.dm_db_missing_index_group_stats contains metrics for missing indexes,

including the how it would have been used (seek or scan), if it would have been used by an

application or system (for example, DBCC), and various measures of cost saving by using

this missing index. The DMV sys.dm_db_missing_index_details contains textual details of

the missing index (what database/schema/table it applies to, what columns the index would

include). These 2 DMVs (metrics and names) are linked together via another DMV

sys.dm_db_missing_index_groups.

A note should be made of how the Total Cost of the missing index is calculated. Total cost

should reflect the number of times the index would have been accessed (as a seek or scan),

together with the impact of the index on its queries.

Applying these indexes to your systems may have a significant impact on the

performance of your queries.

Running the Missing Indexes query on my server gives the results shown in figure 1.3

14 Ian Stirk / Dynamic Management Views In Action Last saved: 2/25/2010

©Manning Publications Co. Please post comments or corrections to the Author Online forum:

http://www.manning-sandbox.com/forum.jspa?forumID=639

Figure 1.3 Output from the Identify Missing Indexes SQL

The results show the most important missing indexes as determined by this particular

method of calculating their Total Cost. You can see the database/schema/table that the

missing index should be applied to. The other output columns relate to how the columns that

would form the missing index would have been used by various queries, such as, if the

columns have been used in equality or inequality clauses on the SQL WHERE statement. The

last column lists any additional columns the missing index would like included at the leaf

level for quicker access. We will discuss these in more detail later in the book.

1.3.3 Identify what SQL statements are running now

Often you may know that a particular batch of SQL (or stored procedure) is running, but

you don’t know how far it has got within the batch of SQL? This is particularly troublesome

when the query seems to be running slowly or you want to ensure a particular point within

the batch has safely passed.

Inspecting the relevant DMVs will allow you to see the individual SQL statements within a

batch that are currently executing on your server.

To identify the SQL statements currently running now on your SQL Server, run the query

given in listing 1.5. If a stored procedure or batch of SQL is running, the column Parent

Query will contain the text of the stored procedure or batch, and the column Individual

Query will contain the current SQL statement within the batch that is being executed (this

can be used to monitor progress of a batch of SQL). Note if the batch contains only a single

SQL statement, then this value is reported in both the Individual Query and Parent Query

columns. Looking at the WHERE clause you will see we ignore any system processed (having

a spid of 50 or less, and we also ignore this actual batch too.

Last saved: 2/25/2010 Ian Stirk / Dynamic Management Views In Action 15

©Manning Publications Co. Please post comments or corrections to the Author Online forum:

http://www.manning-sandbox.com/forum.jspa?forumID=639

Listing 1.5 identify what SQL is running now

SET TRANSACTION ISOLATION LEVEL READ UNCOMMITTED

SELECT session_Id AS [Spid]

, ecid
, DB_NAME(sp.dbid) AS [Database]
, nt_username
, er.status
, wait_type
, SUBSTRING (qt.text, (er.statement_start_offset/2) + 1, #A
((CASE WHEN er.statement_end_offset = -1

 THEN LEN(CONVERT(NVARCHAR(MAX), qt.text)) * 2
 ELSE er.statement_end_offset

END - er.statement_start_offset)/2) + 1) AS [Individual Query]
, qt.text AS [Parent Query]
, program_name
, Hostname
, nt_domain
, start_time

FROM sys.dm_exec_requests er #B
INNER JOIN sys.sysprocesses sp ON er.session_id = sp.spid
CROSS APPLY sys.dm_exec_sql_text(er.sql_handle)as qt
WHERE session_Id > 50
AND session_Id NOT IN (@@SPID)
ORDER BY session_Id, ecid

#A Extract SQL statement
#B Join request to sysprocesses

The DMV sys.dm_exec_requests contains details of each request, the SQL query,

executing on SQL Server. This DMV is joined to the catalog view sys.sysprocesses based on

their session id. Catalog views are similar to DMVs but contain static data, we’ll talk more

about them shortly, in the section entitled DMV companions. The catalog view

sys.sysprocesses contains information about the environment from which the request

originated, includes such details as user name, and the name of host it’s running from.

Combining the DMV and catalog view gives us a great deal of useful information about the

queries that are currently running.

As discussed previously, in the section “Find your slowest queries”, we get the running

query’s SQL text by passing the request’s sql_handle to the DMF sys.dm_exec_sql_text, and

apply string manipulation to that SQL text, to obtain the exact SQL statement that is

currently running. Running the What SQL Is Running Now query on my server gives the

results shown in figure 1.4

16 Ian Stirk / Dynamic Management Views In Action Last saved: 2/25/2010

©Manning Publications Co. Please post comments or corrections to the Author Online forum:

http://www.manning-sandbox.com/forum.jspa?forumID=639

Figure 1.4 Output identify what SQL queries are currently running on the server

The output shows the spid (process identifier), the ecid (this is similar to a thread within

the same spid, and is useful for identifying queries running in parallel), the database name,

the user running the SQL, the status (if the SQL is running or waiting), the Wait status (why

it is waiting), the hostname, the domain name, and the start_time (useful for determining

when the batch was started). These columns and their relevance will be explained in detail

later in the book.

1.3.4 Quickly find a cache plan

The cached plan (execution plan) is a great tool for determining why something is

happening, such as why a query is running slowly or if an index is being used. When a SQL

query is run, it is first analyzed to determine what features, for example indexes, should be

used to satisfy the query. Caching this access plan enables other similar queries (with

different parameter values) to save time by re-using this plan.

It is possible to obtain the estimated or actual Execution Plan for a batch of SQL by

clicking on the relevant icon in SQL Server Management Studio (SSMS). Typically the

estimated plan differs from the actual plan in that the former is not actually run. The latter

will provide details of actual row counts as opposed to estimated row counts (the discrepancy

between the two row counts can be useful in determining if the statistics need to be

updated).

However, there are problems with this approach. If the query contains temporary tables,

getting the estimated plan will not work, since the query is not executed, the temporary

table never gets any rows for subsequent processing. Additionally, it may not be viable to

run the query since it may be difficult to obtain (for example, the query takes too long to

execute, after all that’s often the reason we’re looking at it!).

Luckily, if the query has been executed at least once already, it should exist as a cached

plan, so we just need the relevant SQL to retrieve it using the DMVs. If you run the SQL

query given in listing 1.6 you can retrieve any existing cached plans that contain the text

given by the WHERE statement. In this case, the query will retrieve any cached plans that

contain the text ‘CREATE PROCEDURE’, of which there should be many. Note you will need to

enter some text that uniquely identifies your SQL, for example the stored procedure name,

to retrieve the specific cached plans you would like to see. We also ignore this actual batch

of SQL too, by filtering out its spid.

Listing 1.6 Quickly find a cached plan

SET TRANSACTION ISOLATION LEVEL READ UNCOMMITTED

SELECT TOP 20

Last saved: 2/25/2010 Ian Stirk / Dynamic Management Views In Action 17

©Manning Publications Co. Please post comments or corrections to the Author Online forum:

http://www.manning-sandbox.com/forum.jspa?forumID=639

 st.text AS [SQL]
 , cp.cacheobjtype
 , cp.objtype
 , COALESCE(DB_NAME(st.dbid),
 DB_NAME(CAST(pa.value AS INT))+'*',
 'Resource') AS [DatabaseName]
 , cp.usecounts AS [Plan usage]
 , qp.query_plan
FROM sys.dm_exec_cached_plans cp #A
CROSS APPLY sys.dm_exec_sql_text(cp.plan_handle) st
CROSS APPLY sys.dm_exec_query_plan(cp.plan_handle) qp
OUTER APPLY sys.dm_exec_plan_attributes(cp.plan_handle) pa
WHERE pa.attribute = 'dbid'
AND st.text LIKE '%CREATE PROCEDURE%' #B

#A Join cached plan and SQL text DMVs
#B Text to search plan for

Running the Quickly Find A Cached Plan query on my server gives the results shown in

figure 1.5.

Figure 1.5 Output showing searched for cached plans

When you identify the relevant query you want the cached plan for (the above query is

quite generic, looking for plans that contain the text ‘CREATE PROCEDURE’), clicking on the

column named query_plan will display the query plan. How it does this differs depending on

if you’re using SQL Server version 2005 or 2008. If you’re using version 2005, clicking on the

column will open up a new window showing the cached plan in XML format, if you save this

XML with an extension of .sqlplan, and then open it separately (just double click it in

Windows explorer), it will open showing a full graphical version of the plan in SSMS. If you’re

using SQL Server 2008, clicking on the query_plan column will open up the cached plan as a

full graphical version, this is shown in figure 1.6.

18 Ian Stirk / Dynamic Management Views In Action Last saved: 2/25/2010

©Manning Publications Co. Please post comments or corrections to the Author Online forum:

http://www.manning-sandbox.com/forum.jspa?forumID=639

Figure 1.6 Missing Indexes details included with a 2008 Cached Plan

As a side note, if you’re using SQL Server 2008, when you see the graphical version of

the cached plan, if there are any missing indexes, they are given at the top of each section in

green, with text starting “Missing Index” (again see figure 1.6), if you right mouse click on

the diagram you can select the “missing index details...”, clicking on this will open a new

window with definition of the missing index, ready to add, you just need to add an

appropriate index name. An example of this is shown in listing 1.7

Listing 1.7 Missing index details
/*
Missing Index Details from ExecutionPlan1.sqlplan
The Query Processor estimates that implementing the following index could
improve the query cost by 67.4296%.
*/

Last saved: 2/25/2010 Ian Stirk / Dynamic Management Views In Action 19

©Manning Publications Co. Please post comments or corrections to the Author Online forum:

http://www.manning-sandbox.com/forum.jspa?forumID=639

/*
USE [YourDatabaseName]
GO
CREATE NONCLUSTERED INDEX [<Name of Missing Index, sysname,>]
ON [dbo].[PNLError] ([COB])
INCLUDE ([RequestId],[DealCode])
GO
*/

If I search for the cached plan of a routine that contains a reference to something called

SwapsDailyfile, I can quickly get its cached plan, part of which is shown below in figure 1.7

20 Ian Stirk / Dynamic Management Views In Action Last saved: 2/25/2010

©Manning Publications Co. Please post comments or corrections to the Author Online forum:

http://www.manning-sandbox.com/forum.jspa?forumID=639

Figure 1.7 Cached plan showing cost by statement and within each statement

Looking at figure 1.7, you can see that each statement within a batch or stored procedure

will have a query cost associated with it (here you’ll notice the first 2 queries have a 0%

cost, followed by another query that has a 100% cost. Once you find the section of code that

has a high query cost, you should then inspect the components (shown as icons) that make

up that cost. They too are numbered (in our example, Query 3 is divided into 3 parts, with

cost values of 0%, 62% and 38%. You can thus identify the section within the batch that

should be targeted for improvement, in our case is it the operation that cost 62%.

1.4 Preparing to use DMVs

A great many exciting DMV insights into our SQL queries await us. But before we can dive

into using DMVs, we need to ensure we are aware of certain prerequisites. The first of these

relates to permissions to the DMVs/DMFs, and the second relates to circumstances under

which you might want to clear the DMVs.

1.4.1 Permissions

There are two levels of DMVs and DMFs usage, namely server-scoped and database-

scoped. Server-scoped require VIEW SERVER STATE permission on the server and database-

scoped require VIEW DATABASE STATE permission on the database. Granting VIEW SERVER

STATE permission infers VIEW DATABASE STATE permission on all the databases on the

server.

Note that if a user has been granted VIEW SERVER STATE permission but has been

denied VIEW DATABASE STATE permission, the user can see server level information but not

database level information for the denied database.

If you’re undertaking testing, you may want to be able to clear various DMVs, to do this

you will need ALTER SERVER STATE on the server. Details of the various methods used to

clear the DMVs are given in the following section.

Rather than assign these permissions to existing groups or users, it is often preferable to

create a specific login (called, for example, DMV_Viewer) and assign appropriate permissions

to that login.

1.4.2 Clearing DMVs

Often when we want to find the effect of a given query or system action, we will want to

clear the relevant DMVs to give us a clean starting point from which to make measurements.

Various DMVs can be cleared in different ways.

Last saved: 2/25/2010 Ian Stirk / Dynamic Management Views In Action 21

©Manning Publications Co. Please post comments or corrections to the Author Online forum:

http://www.manning-sandbox.com/forum.jspa?forumID=639

Clearing DMVs

Please note clearing DMVs on production machines should only be done after careful

consideration, since it will result in queries taking longer to compile and run.

Before we discuss how the DMVs can be cleared, it is worth noting another approach

exists to allow us to determine the effect of a given query or system action. DMV data is

accumulative, so to determine the effect of a query, we can to take a snapshot of the

relevant DMVs, run the query under investigation, and then take a second snapshot. The

effect of the query can be determined by comparing the two snapshots and calculating the

differences (delta). Several examples of this approach are given subsequent chapters.

Another possible way of using the DMVs without clearing them, is to retrieve SQL query

data from a given time period (best if it has run recently), since several DMVs record when

the query was last run.

The simplest way to clear the DMVs is to stop and restart the SQL Server service or

alternatively reboot the SQL Server box. Whilst this may be the easiest method, it is

probably also the most drastic in terms of impact on users, so it should be used with caution.

Alternatively, it is possible to clear some specific DMVs, in particular, those that relate to

cached plans and query performance. These DMVs start with a signature of sys.dm_exec_.

To clear the DMVs that relate to cached plans, at the server level, we use the following

command: DBCC FREEPROCCACHE. This clears all the cached plans on all databases on the

server. In SQL Server 2008 this command can also be supplied with a parameter to remove

a specific cached plan from the DMVs

The parameter supplied to DBCC FREEPROCCACHE is either a plan_handle, sql_handle or

pool_name. plan_handle and sql_handle are 64bit identifiers of a query plan and batch of

SQL statements respectively that are found in various DMVs. The pool_name is the name of

a Resource Governor workload group within a resource pool.

We can also clear the cached plans for a specific database only, we can use the below:

DECLARE @DB_ID INT

SET @DB_ID = DB_ID('NameOfDatabaseToClear') -- Change this to your DB

DBCC FLUSHPROCINDB(@DB_ID)

When SQL Server is closed down or the SQL Server service is stopped, the DMV data is

lost. There are of course methods (described later) of creating a more permanent version of

this transient information for later analysis.

22 Ian Stirk / Dynamic Management Views In Action Last saved: 2/25/2010

©Manning Publications Co. Please post comments or corrections to the Author Online forum:

http://www.manning-sandbox.com/forum.jspa?forumID=639

It should be noted that not all queries are cached, these include DBCC commands and

index reorganizations, additionally queries can be removed from the cache when there are

memory pressures.

1.5 DMV Companions

Whilst this book is primarily concerned with the usage of DMVs, but to get the most out

of the DMVs it is necessary to know more about some peripheral but related areas, including

catalog views, cached plans, indexes, and database statistics. Knowing about these other

areas should give us a better understanding of what the DMVs provide and what can be done

to improve performance.

1.5.1 Catalog views

DMVs and catalog views together provide a more complete view of your internal SQL

Server data, where DMVs contain dynamic data and catalog views contain static data. To

take full advantage of the various DMVs we will need to join the DMVs with various catalog

views to produce more meaningful output. For example, when we are processing DMVs that

relate to indexes, we will often join with the catalog view sys.indexes which contains

information about indexes, such as index type or its uniqueness, created on tables in the

current database.

Earlier versions of SQL Server held this internal meta data in system tables, these tables

are still present in later versions. However it is not recommended to query these system

tables directly, since future internal changes that Microsoft make may break your code.

These system tables have been replaced by:

 Catalog views – tables that describe objects e.g. sys.columns

 Compatibility views – backward compatible with older tables e.g. syscolumns

Where possible you should use catalog views, which like DMVs, are part of the sys

schema. Catalog views contain both server and database level objects, and tend to be more

user-friendly (for example, better named columns) than the older system tables.

1.5.2 Cached plans

When a query is run, a cached plan for it is created. This details what tables are

accessed, what indexes are used, and what types of joins are performed etc. Storing this

Last saved: 2/25/2010 Ian Stirk / Dynamic Management Views In Action 23

©Manning Publications Co. Please post comments or corrections to the Author Online forum:

http://www.manning-sandbox.com/forum.jspa?forumID=639

information in a cached plan allows subsequent similar queries (where the parameters differ)

to re-use this plan, thus saving time.

In many ways, a cached plan is analogous to the well-trodden tourist excursion many of

us have undertaken when we take a holiday. The experienced tour guide knows the most

efficient routes to use to fulfill the experiences of his group of tourists. Similarly, the SQL

Server optimizer knows the most efficient routes to access different tables for its SQL

queries.

When using the DMVs that relate to SQL queries, we will often look at the query’s cached

plan to get a greater insight into how the query is fulfilling its requirements (for example,

getting or updating data). This will allow us to target many problems and get ideas of any

possible improvements.

Examining a query’s cached plan can give you a great deal of insight into why a query is

running slowly. Maybe the query is not using an index? Maybe the query is using the ‘wrong’

index? Maybe the data’s statistics are out of date? All this information and more can be

gleaned by examining the cached plan.

Our output from our sample SQL snippets will often contain the cached plan associated

with the SQL, understanding it will give insight into how query currently works and how you

might want to change it to improve its performance. For example, add a missing index or

update any stale statistics. We’ll hear more about reading cached plans later.

Luckily, we can use DMVs to access the cached plans, allowing us to investigate further

why the query is having problems and potentially provide solutions. We saw earlier, in the

section entitled “Quickly find a cached plan” how a cached plan can be used to target the

area costing the most in terms of performance.

1.5.3 Indexes

Perhaps the main tool for improving the performance of your queries is the index.

Indexes are used for fast retrieval of data (imagine looking for something specific in this

book without the index at the back!). Additionally, indexes are also useful for sorting and

providing both unique and foreign key constraints.

The DMVs record many index-related details including how often an index is used, how it

is used (as part of a scan, lookup, by the application or system routines), whether it is not

used at all, any concurrency problems accessing the indexes, and indeed details of any

missing indexes.

Knowing about how the different types of indexes are used will give you greater pool of

knowledge from which you can propose solutions. In essence, for retrieving a small number

of relatively unique rows you want an index that can quickly identify the subset of rows.

These are typically non-clustered indexes. For longer reporting-like queries you typically

want a range of rows that are hopefully physically next to each other (so you can get them

24 Ian Stirk / Dynamic Management Views In Action Last saved: 2/25/2010

©Manning Publications Co. Please post comments or corrections to the Author Online forum:

http://www.manning-sandbox.com/forum.jspa?forumID=639

with fewer reads). This typically means a clustered index. We will discuss indexes in more

detail in the chapter relating to index DMVs.

1.5.4 Statistics

When a query is run, the optimizer inspects the relevant tables, row counts, constraints,

indexes and data statistics to determine a cost effective way of fulfilling the query. Statistics

describe the range and density of the data values for a given column. This is used to help

determine the optimal path to the data. This information is used to create a plan that is

cached for re-use. In essence, statistics can greatly influence how the underlying data is

queried.

When the data in the table changes the statistics may become stale, this may result in a

less efficient plan for the available data, to get around this, the statistics are typically

updated automatically, and any necessarily plans recompiled and re-cached.

For tables with more than 500 rows, it requires a 20% change in the underlying data

before the statistics are automatically updated. For large tables, containing, for example 10

million rows, it would require 2,000,000 changes before the statistics are recalculated

automatically. If you were to add 100,000 rows to this table on a daily basis, it would require

20 days before the statistics are updated, until that time you may be working with stale

statistics and a suboptimal plan. Knowing this, it is often advisable to update the statistics

more regularly using a scheduled job. I have experienced many occasions when queries have

been running very slowly, become instantly solved by updating the table’s statistics.

In many ways, especially for larger tables, on mature systems, I do wonder if statistics

are the critical important element in database systems. When you run a query, the optimizer

looks at the columns you join on, together with the columns involved with your WHERE

clause. It looks at the column data’s statistics to determine the probabilities involved in

retrieving data based on those column values. It then uses these statistical probabilities to

determine if an index should be used, and how it should be used (for example, seek, lookup

or scan). So you can see, having up to date statistics is very important, later in the book I’ll

show you some SQL to determine if your statistics need to be refreshed.

1.6 Working with DMVs

Problems can be tackled from several angles, using a variety of tools. The point to note is

some tools are more appropriate than others for given tasks. For example, you could use a

screwdriver or a blunt knife to undo a screw, both could probably do the job, but you’ll find

one is easier than the other. Similarly, if you want to determine which queries are running

slowly, you could use SQL Server Profiler. However, a quicker/smarter way would be to use

DMVs.

Last saved: 2/25/2010 Ian Stirk / Dynamic Management Views In Action 25

©Manning Publications Co. Please post comments or corrections to the Author Online forum:

http://www.manning-sandbox.com/forum.jspa?forumID=639

This is not to say that using DMVs are better than other tools. The point I want to make is

that sometimes, depending on the problem you are trying to investigate, using DMVs may

provide a quicker and easier method of investigation. The different tools should be seen as

complimentary, rather than mutually exclusive.

Part of the problem of using DMVs is that they tend to be little known and untried

compared with the more established tools. Hopefully the code samples given in this book will

help form the basis of an additional approach to problem solving.

1.6.1 In context with other tools

Developers and DBAs that lack knowledge of DMVs will typically turn to the traditional

problem solving database tools including tracing, cached plan inspection, database tuning

advisor, and System monitor. These are discussed briefly below in the comparison with using

DMVs.

SQL SERVER PROFILER

SQL Server comes with a SQL Server Profiler utility that allows you to record what SQL is

running on your SQL Server boxes. It is possible to record a wide range of information (for

example, number of reads/writes or query duration) and filter the range of data you want to

record (for example, for a given database or spid).

SQL Server Profiler is a well known and much used utility, typically allowing you to target

the cause of a problem. However it does take system resources and because of this running

it on production systems is usually not recommended.

There are various reasons for using SQL Server Profiler, including discovering what SQL

queries are being run, why a query is taking so long to run, and creating a suite of SQL that

can be replayed later for regression testing. We have already seen in the DMV examples

section how we can discover both what is running and also the slowest queries easily and

simply by using the DMVs. With this in mind, it may be questionable if we need to use SQL

Server Profiler to capture information that is already caught by the DMVs (remember we can

get the delta between two DMV snapshots to determine the effect of a given batch of SQL

queries).

Looking further at using SQL Server Profiler to discover why a batch of SQL is running

slowly, we have the additional task of summing the results of the queries, some of which

may run quickly but are run often (so their accumulative effect is large). This problem is

compounded by the fact that the same SQL may be called many times but with different

parameters. Creating a utility to sum these queries can be time consuming. This summation

is done automatically with the DMVs.

26 Ian Stirk / Dynamic Management Views In Action Last saved: 2/25/2010

©Manning Publications Co. Please post comments or corrections to the Author Online forum:

http://www.manning-sandbox.com/forum.jspa?forumID=639

DATABASE TUNING ADVISOR

The Database Tuning Advisor (DTA) is a great tool for evaluating your index

requirements. It takes a given batch of SQL statements as its input (for example, taken from

a SQL Server Profiler trace), and based on this input, it determines what the optimal set of

indexes are to fulfill those queries.

The SQL statements used as input into the DTA should be representative of the input you

typically process. This should include any special processing, such as month end or quarterly

processing. It can also be used to tune a given query precisely to your processing needs.

The DTA amalgamates the sum total effect of the SQL batch and determines if the

indexes are worthwhile. In essence, it evaluates if the cost of having a given index for

retrieval is better than the drawbacks of having to update the index when data modifications

are made.

Where possible, the indexes the DTA would like to add or remove should be correlated

with those proposed by the DMVs, for example, missing indexes, unused or high-

maintenance indexes. This shows how the different tools can be used to compliment each

other rather than being mutually exclusive.

SYSTEM MONITOR

System monitor is a Windows tool that can be used to measure SQL Server performance

via various counters. These counters relate to objects such as processors, memory, cache,

and threads. Each object in turn has various counters associated with it to measure such

things as usage, delays, and queue lengths.

In SQL Server 2008 it is possible to merge the System Monitor trace into the SQL Server

Profiler trace, enabling us to discover what is happening in the wider world of Windows when

given queries are run.

These counters measure various components that run on Windows. A subset of them,

that relate to SQL Server in particular, can be accessed via the DMV

sys.dm_os_performance_counters. If we query this DMV at regular intervals and store the

results, we can use this information in diagnosing various hardware and software problems.

CACHED PLAN INSPECTION

We’ve already discussed how we can get the cached plan for a given query, and also its

importance in relation to DMVs. Having a cached plan is a great starting point for diagnosing

problems, since they provide more granular details of how the query is executed.

Each SQL statement within a batch is assigned a percentage cost in relation to the whole

of the batch. This allows you to quickly target the query taking most of the query cost. For

each query the cached plan contains details of how that individual query is executed, for

Last saved: 2/25/2010 Ian Stirk / Dynamic Management Views In Action 27

©Manning Publications Co. Please post comments or corrections to the Author Online forum:

http://www.manning-sandbox.com/forum.jspa?forumID=639

example, what indexes are used, and the index access method. Again a percentage is

applied to each component. This allows you to quickly discover the troublesome area within a

query that is the bottleneck.

In additional to investigating the area identified as being the mostly costly, we can also

check the cached plan for indicators of potential performance problems. These indicators

include table scans, missing indexes, columns without statistics, implicit data type

conversions, unnecessary sorting, and unnecessary complexity. We will provide a SQL query

later in the book that will allow you to search for these items that may be the cause of poor

performance.

DMVs are typically easier to extract results from, when compared with other more

traditional methods. However, these different methods are not mutually exclusive, and

where possible, the different methods should be combined to give greater support and

insight into the problem being investigated.

1.6.2 Self-healing database

Typically we get notified of a problem via an irate user, for example, my query’s taking

too long, what’s happening? Whilst identifying and solving the problem using reactive

approach fixes the immediate difficulty, a better, more stress free and professional approach

would be to be preemptive, to identify and prevent problems before they become noticeable.

A preemptive approach involves monitoring the state of your databases, and

automatically fixing any potential problems before they have a noticeable effect. Ultimately,

if we can automatically fix enough of these potential problems before they occur, we will

have a self-healing database.

If we adopt a preemptive approach to problems, with a view to fixing potential problems

before they become painfully apparent, we can implement a suite of SQL Server jobs that

run periodically, that can not only report potential problems but also attempt to fix them too.

With the spread and growth of SQL Server within the enterprise via tools such as SharePoint,

and Customer Relationship Management (CRM) systems, as well as various ad-hoc

developments (that have typically been outside the realms of database developers or DBAs),

there should be an increasing need for self-healing databases, and a corresponding increase

in knowledge of DMVs.

If we take as our goal the premise that we want our queries to run as quickly as possible,

then we should be able to identify and fix issues that counteract this aim. Such issues include

missing indexes, stale statistics, index fragmentation, and inconsistent data types.

I would hope we can provide SQL queries that run as regular SQL Server jobs that will at

least attempt to automate the fixing of these issues with a view creating a self-healing

database. These queries will be provided in the chapter “Towards a self healing database”.

28 Ian Stirk / Dynamic Management Views In Action Last saved: 2/25/2010

©Manning Publications Co. Please post comments or corrections to the Author Online forum:

http://www.manning-sandbox.com/forum.jspa?forumID=639

1.6.3 Reporting and transactional databases

Using DMVs you could present a case for separating out the reporting aspects of the

database from the transactional aspects. This is important because they have different uses

and they result in different optimal database structures. Having them together often

produces conflicts.

A reporting database is one primarily concerned with retrieving data. Some aggregation

may have already been done else is done dynamcally, as it is required. The emphasis is on

reading and processing lots of data, often resulting in long running queries. To optimize for,

this we tend to have lots of indexes (and associated statistics), with a high degree of page-

fullness (so we can access more row per read). Typically, data doesn’t have to appear in the

reporting database ‘immediately’. Often we are reporting on how yesterday’s data compares

with previous data, so potentially it can be up to 24 hours late. Additionally, reporting

databases have more data (indexes are often very large), resulting in greater storage, longer

backups and restores.

By comparison, a transactional database is one where the queries typically retrieves and

updates a small number of rows, and run relatively quickly. To optimize for this, we tend to

have few indexes, with a medium degree of page fullness (so we can insert data in the

correct place without causes too much fragmentation).

Now we’ve outlined the differing needs of both the reporting and transactional databases

I think you can see how their needs compete and interfere with each other’s optimal design.

If our database has both reporting and transactional requirements, then when we update a

row, if there are additional indexes these too will need to be updated, resulting in a

transactional query that takes longer to run, leading to a greater risk of blocking, timeout (in

.NET clients for example), and deadlock. Additionally the transactional query, although it

would run quickly, might be blocked from running by a long running reporting query.

We can look at the DMVs to give us information about the split of reporting versus

transactional requirements, this data includes:

 number of reads versus the number of writes per database or table

 number of missing indexes

 number and duration of long running queries

 number and duration of blocked queries

 space taken (also reflects time for backup/restore)

Usually, the missing indexes need to be treated with caution. Whilst adding indexes is

great for data selection (reporting database), it may be detrimental to updates (transactional

database). If the databases are separated, we can easily implement these extra indexes.

Last saved: 2/25/2010 Ian Stirk / Dynamic Management Views In Action 29

©Manning Publications Co. Please post comments or corrections to the Author Online forum:

http://www.manning-sandbox.com/forum.jspa?forumID=639

With a reporting database will can create the indexes such that there is no redundant

space on the pages, thus ensuring we optimize data retrieval per database read.

Using this data can help determine if separating out at least some of the tables into

another database might lead to a better database strategy (for example, tables that require

lots of IO could be placed on a different drive). There are many ways of separating out the

data including replication, and mirroring.

1.7 Categories of DMVs

Most sources categorize DMVs in the same manner that Microsoft has adopted, based on

their area of functionality. We will use a similar approach in this book. However, I realize this

might not always be the optimal method when researching how to fix problems, bearing this

in mind we will construct an alternate table of contents later, which is structured by problem

area.

1.7.1 Overview of the DMV categories

A brief outline of each of the DMV categories follows.

Table 1.1 The major DMV groups

DMV Group Description

Change Data Capture Change Data Capture relates to how SQL Server captures change
activity (inserts, updates, and deletes) across one or more tables,
providing centralized processing. It can be thought of as a
combination of trigger and auditing processing in a central area.
These DMVs contain information relating to various aspects of
Change Data Capture, including transactions, logging and errors.

Common Language Runtime The Common Language Runtime allows non-database set
processing code to be written in one of the .NET languages, offering
a richer environment and language and often providing a magnitude
increase in performance. These DMVs contain information relating to
various aspects of the .NET Common Language Runtime, including
application domains (these are wider in scope than a thread or
smaller than a session), loaded assemblies, properties and running
tasks.

Database Mirroring The aim of database mirroring is to increase database availability.
Transaction logs are moved quickly between servers, allowing fast
fail over to the standby server. These DMVs contain information

30 Ian Stirk / Dynamic Management Views In Action Last saved: 2/25/2010

©Manning Publications Co. Please post comments or corrections to the Author Online forum:

http://www.manning-sandbox.com/forum.jspa?forumID=639

relating to various aspects of database mirroring, including
connection information and page-repair details

Database These DMVs contain information relating to various aspects of
databases, including space usage, partition statistics, and session
and task space information.

Execution These DMVs contain information relating to various aspects of query
execution, including cached plans, connections, cursors, plan
attributes, stored procedure statistics, memory grants, query
optimizer information, query statistics, active requests and sessions,
SQL text, and trigger statistics.

Full-Text Search Full-text search relates to the ability to search character based data
using linguistic searches. This can be thought of as a higher level
wildcard search. These DMVs contain information relating to various
aspects of full-text search, including existing full-text catalogues,
index populations currently occurring, and memory buffers/pools.

Index These DMVs contain information relating to various aspects of
indexes, including missing indexes, index usage (number of seeks,
scans, lookups, by system or application, and when they last
occurred), operational statistics (I/O, locking, latches, and access
method), and physical statistics (size and fragmentation information).

Input/Output (IO) These DMVs contain information relating to various aspects of I/O,
including virtual file statistics (by database and file, number of
reads/writes, amount of data read/written, and IO stall time), backup
take devices, and any pending IO requests.

Object These DMVs contain information relating to various aspects of
dynamic management objects, these relate to object dependencies.

Query Notification These DMVs contain information relating to various aspects of query
notification subscriptions in the server.

Replication These DMVs contain information relating to various aspects of
replication, including articles (type and status), transaction and
schemas (table columns).

Resource Governor In the past, running inappropriate ad hoc queries on the database
sometimes caused timeout and blocking problems. SQL Server 2008
implements a resource governor what controls the amount of
resources different groups can have, allowing more controlled access
to resources. These DMVs contain information relating to various
aspects of resource governor, including resource pools, governor
configuration and workload groups.

Last saved: 2/25/2010 Ian Stirk / Dynamic Management Views In Action 31

©Manning Publications Co. Please post comments or corrections to the Author Online forum:

http://www.manning-sandbox.com/forum.jspa?forumID=639

Service Broker Service broker is concerned with providing transactional
disconnected processing, allowing a wider range of architectural
solutions to be created. These DMVs contain information relating to
various aspects of service broker, including activated tasks,
forwarded messages, connections, and queue monitors.

SQL Server Extended Extended events allows SQL server integrate into Microsoft’s wider
event handling processes, allowing integration of SQL Server events
with logging and monitoring tools.

SQL Server Operating System These DMVs contain information relating to various aspects of the
SQL Server Operating System (SQLOS), including performance
counters, memory pools, schedulers, system information, tasks,
threads, wait statistics, waiting tasks, and memory objects.

Transaction These DMVs contain information relating to various aspects of
transactions, including snapshot, database, session, and locks.

Security These DMVs contain information relating to various aspects of
security, including audit actions, cryptographic algorithms supported,
open cryptographic sessions, and database encryption state (and
keys).

1.7.2 Our DMV subset

Since this book takes a look at DMVs from a practical developer’s perspective, we will

tend to concentrate on those DMVs that the developer will use in help solve their everyday

problems. With this in mind, we will concentrate on the following categories of DMV:

 Index

 Execution

 SQL Server Operating System

 Common Language Runtime

 Transaction

 Input/Output

 Database

If there is sufficient subsequent interest, perhaps another book could be written about the

other DMVs groups.

32 Ian Stirk / Dynamic Management Views In Action Last saved: 2/25/2010

©Manning Publications Co. Please post comments or corrections to the Author Online forum:

http://www.manning-sandbox.com/forum.jspa?forumID=639

1.8 Summary

This chapter’s short introduction to Dynamic Management Views has illustrated the range

and depth of information that is available quickly, easily and freely, just for the asking.

We’ve discovered what DMVs are, and the type of problems they can solve. DMVs are

primarily used for diagnosing problems and also assist in the proposal of potential solutions

to these problems.

Various example SQL snippets have been provided and discussed. These should prove

immediately useful in determining your slowest SQL queries, identifying your mostly costly

missing indexes, identifying what SQL statements are running on your server now, and

retrieving the cached plan for an already executed query. Additionally, a very useful simple

monitor has been provided.

The rest of the book will provide many useful example code snippets, which cover specific

categories of DMVs, but always with a focus on the developer’s/DBA’s needs. Since we tend

to use similar patterns for many of the SQL snippets, it makes sense to discuss these

common patterns first, which we’ll do in the next chapter.

	Table of Contents
	1 Welcome to the Dynamic Management Views Goldmine
	1.1 What are Dynamic Management Views?
	1.1.1 A glimpse into SQL Server’s internal data
	1.1.2 Aggregated results
	1.1.3 Impact of running DMVs
	1.1.4 Part of SQL Server 2005 onwards

	1.2 The problems DMVs can solve
	1.2.1 Diagnosing Problems
	1.2.2 Performance Tuning
	1.2.3 Monitoring

	1.3 DMV examples
	1.3.1 Find your slowest queries
	1.3.2 Find those missing indexes
	1.3.3 Identify what SQL statements are running now
	1.3.4 Quickly find a cache plan

	1.4 Preparing to use DMVs
	1.4.1 Permissions
	1.4.2 Clearing DMVs

	1.5 DMV Companions
	1.5.1 Catalog views
	1.5.2 Cached plans
	1.5.3 Indexes
	1.5.4 Statistics

	1.6 Working with DMVs
	1.6.1 In context with other tools
	1.6.2 Self-healing database
	1.6.3 Reporting and transactional databases

	1.7 Categories of DMVs
	1.7.1 Overview of the DMV categories
	1.7.2 Our DMV subset

	1.8 Summary

